
                                                                                                                                    

JOURNAL OF 

MATHEMATICAL 

PHYSICS 
VOLUME 5, NUMBER 9 September 1964 

Exact Solution of the Schrodinger Equation for Inverse Fourth-Power Potential 

RICHARD M. SPECTOR 

Department of Physics and Astronomy, University of Rochester, Rochester, New York 
(Received 6 March 1964) 

:n~ solu~ion of the SchrOdinger equation for the potential V(r) = V!(p.r)4 and all angular momenta 
18 gIven m terms of known functions, namely, the solutions to the modified Mathieu equation with 
compl~x param~ters and. complex argument. Scattering solutions for both attractive and repulsive 
potentIals are gIven and m the latter case the explicit expression for the S matrix is given. 

I. INTRODUCTION 

H ISTORICALLy,l-3 interest in nonrelativistic 
potential theory has always been centered on 

solving the Schrodinger equation for potentials less 
singular than the inverse square. This is because 
the boundary conditions at the origin are easy to 
satisfy (the Jost functions are, in general, finite and 
nonzero), and there are discrete bound states with 
a lowest one: the ground state. However, Case/ 
some years ago, showed that potentials of the form 
r-n n 2: 2 do not cause as much trouble as might 
be expected and, in fact, do not have a divergent 
behavior at the origin for attractive potentials. With 
the adjustment of a single parameter, it is possible 
to form discrete bound states but there is no ground 
state. 

Case pointed out two possible useful situations 
for such singular potentials: (1) the case where such 
a potential is not valid all the way to r = 0 but is 
joined to some less singular potential as r becomes 
small in much the same way as the Coulomb po­
tential is not really valid down to6 r = 0; and 

1 A. Bhattacharjie and E. C. G. Sudarshan, Nuovo Ci-
mento 25, 864 (1962). 

2 A. K. Bose, Phys. Letters 7, 245 (1963). 
3 V. Bargmann, Rev. Mod. Phys. 21, 488 (1949). 
• K. M. Case, Phys. Rev. 80, 797 (1950). 
~ M~reoyer, the Coulomb potential beh!!-ves very badly 

at mfimty m terms of the standard phase ShIft analysis. The 
only reason we use it is because we must (it's physical). 

(2) for repulsive singular potentials the study of 
scattering is mathematically well-defined and useful. 

More recently, interest in potentials of the form 
A/r4 + B/r3

, A > 0, have been investigated by 
Predazzi and Regge6 in an attempt to shed light 
on the analyticity of the S matrix in the complex 
l plane for singular potentials. Their argument is 
that physical interactions seem more singular at 
close range than the potentials which one normally 
deals with. Therefore, if we expect the physical S 
matrix to be meromorphic in l we must study singular 
potential scattering to look for clues as to the proper 
behavior. They show that, indeed, making the po­
tential singular removes the usual difficulties one 
has with the S matrix in the l plane that are found 
with the Coulomb potential, for instance, in the 
left half-plane. The authors are not able to solve 
the Schrodinger equation except for zero energy. 

Other workers7
•
8 have investigated r-4 potentials 

in the Bethe-Salpeter equation so as to illuminate 
the behavior of this equation. However, in this 
case the solutions for r- 4 reveal a very similar be­
havior to the inverse-square potential for the Schr6-
dinger equation. This is not surprising since the 

6 E. Predazzi and T. Regge, Nuovo Cimento 24 518 
(1962). ' 

7 A. Bastai, L. Bertocchi, S. Fubini, G. Furlan, and M. 
Tonin, Nuovo Cimento 30, 1512 (1963). 

8 A. Bastai, L. Bertocchi, G. Furlan, and M. Tonin, 
Nuovo Cimento 30, 1532 (1963). 
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Bethe-Salpeter equation is in a sense a squared 
equation (in energy), while the SchrOdinger equa­
tion is linear. 

Though Case (see also Morse and Feshbach9
) 

demonstrated the exact solutions to the Schrodinger 
equation for r-2

, he was able only to give the general 
behavior at the origin for more singular potentials. 
It is our intention here to give the exact solutions, 
for attractive and repulsive potentials, for the r- 4 

potential in the nonrelativistic case for all angular 
momenta. The solutions turn out to be in the form 
of solutions of the modified Mathieu equation of 
complex argument and so are, in general, rather 
complicated in form. However, the final result for 
the S matrix is remarkably simple, formally at 
least, and is amenable to a machine calculation of 
the scattering. 

II. GENERAL FORMULATION 

We seek a solution to the separated radial equation 

cp"(r) + [k2 + (;)4 - l(l; 1) ]cp(r) = 0 (1) 

V > 0 attractive 
V < 0 repulsive 

whereunitsaresuchthatE = k2
, VCr) = V/(JL Ir\)4 

with V having the dimension of energy and JL > 0 
the dimension of inverse length. It is possible (and 
in fact was so done) to find the solutions of (1) by 
using the methods of Refs. 1 and 2 by starting with 
the algebraic form of the modified Mathieu equation. 
It is easier and simpler to follow the reverse pro­
cedure and start with (1), making the correct trans­
formations as we go. Let us put cp(r) = rt ift(r) to get 

ift"(r) + 1: ift'Cr) + [k2 + V 4 
r (/-IT) 

- l(l + Y + t ]ift(r) = 0, 

and then putting x = Ar we have 

ift"Cx) + ;; ift(x) + [(~r + ~;)24 

- (l ~2 !?]ift(x) = o. 

Making the further substitution 

x = e' 

0:::; Ixl :::; 1, 

1 :::; Ixl :::; co, 

(2) 

(3) 

• P. M. Morse and H. Feshbach, Methods of Theoretical 
Physics (McGraw-Hill Book Company, Inc., New York, 
1953), mainly Chaps. 5 and 11. 

we arrive at 

ift"(Z) + [(k/A/e±2Z + (VA2/JL4)e'f2z 

- (l + !)2]ift(Z) = 0, (4) 

where we always have Re (z) ?: o. Let us set 

e/A2 
= VA2/JL4 = q and a = (l + !)2 

to get 
ift"Cz) - [a - 2q cosh 2z]ift(z) = 0, (5) 

which is the canonical form of the modified Mathieu 
equation, i.e., the form assumed by the Mathieu 
equation 

ift"(y) + [a + 2q cos 2y]ift(y) = 0 

when y = iz. In what follows we draw mainly on 
the material in McLachlanlo (hereafter referred to 
as M), whose notation we use, and Meixner and 
Schafkell (hereafter MS) where a = A and q = h2

• 

The standard treatment of the ordinary Mathieu 
equation is concerned with periodic and nonperiodic 
solutions and with regions of stable and unstable 
solutions for various choices of the pair (a, q). How­
ever, it is obvious that these concerns are no longer 
of interest when we deal with the modified equation 
(5) because cosh (2z) is not periodic for real z. 
Instead we are concerned with asymptotic properties 
of the solutions of (5). 

In the relationship 

k2/A! = VA:/JL4
, 

if we consider positive energy solutions for an at­
tractive potential we must take 

Aa = A = JLk!/Vi and qa = q = kvt/l > 0 

so that Aa and qa are real and z = ±In Ar is real. 
Though this is less interesting than the case of a 
repulsive potential, it is easier to deal with, since 
if V < 0 we must take 

1 (1 .) f.J.
kt 1 (1 .) Ar = v2 - t (_ V)f = v2 - t A, 

. k( - V)! . 
qr = t 2 = tq, 

JL 

and Ar and qr are complex as is z. 

10 N. W. McLachlan, Theory and Applications of Mathieu 
Functions (Oxford University Press, Oxford, 1947). The 
reader is cautioned that various passages in this book are in­
correct, for example, Secs. 6.20 and 12.30 do not state the 
regions of validity of the expressions contained therein (these 
expressions are completely invalid for certain regions). Simi­
larly parts 12 and 15 of the Additional Results are completely 
wrong. In all cases the correct expressions are found in Ref. 11. 

11 J. Meixner and F. W. Schiiike, Mathieu8che Funktionen 
und Sphi.iroidfunktionen (Springer-Verlag, Berlin, 1954). 
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m. SOLUTIONS FOR ATTRACTIVE POTENTIAL 

We consider first the case when Aa and qa are 
real for then it is easy to write down the solutions 
of (5) which are well known. Transforming the nota­
tion of MS to our own, we write the two independent 
solutions of (5) as12 

M!3) (4)(Z, qi) = [me, (0 , q)fl 

'" . L (-lrC;r(q)m!~~4r\(2q! coshz) (6) 
,. ... -00 

where H!a;2~4) are the Hankel functions of the first 
a.nd second kind, respectively, and in the more 
conventional notation have the property9 

H;3)(Z) = H;l)(z) -+ (~yei('-lar-i") 

H;4)(Z) = H;2)(Z) -+ (~J!e-;('-lU1l"-l") 

as z-++oo. (7) 

In (6) II is a parameter which is a very complicated 
function of a and q, II = lI(a, q), discussed in more 
detail in the Appendix. The coefficients C;r(q) 
satisfy the recursion relations 

[a - (II + 2r)2]C;r - q(C;,-2 + C;r+2) = ° (8) 

which unfortunately are of the three-term variety. 
We discuss (8) in the Appendix. The constant in 
(6) is 

'" 
me,(O, q) = L C;,(q). (9) 

It is obvious that having the two Hankel functions 
appearing in (6) means that we can form other 
solutions with different asymptotic behavior, for 
instance, behaving as the sine or cosine as do Jq(z) 
and J _q(z) [or N uCz) if (J' is an integer] the Bessel 
functions. We are obviously interested in the forms 
(7) so we will not discuss other possibilities. The 
recursion relations (8) are known1o

•
11 to give a 

converging series for the C;!s for the correct lI(a, q) 
(which always exists) and the series (6) can be 
proved convergent for Icosh zl ~ 1, but uniformly 
convergent only when Icosh zl > 1. Here z takes 
on any complex value. 

We write the general solution of (1) when the 
potential is attractive and energy positive as 

<p(r) = Ari M;3)(± In "Ar, q1) + Br1M;4)(± In "Ar, q1) 
(10) 

12 The two independent solutions are wrongly given in 
part 12 of Additional Results of Ref. 10. When II is an integer 
the form. of the solutions and various expressions we use are 
rather different but lead of course to the same conclusions. 

where the plus sign is taken if \Ar\ ~ 1 and the 
negative sign if \Ar\ ~ 1. In (10) A and B are arbi­
trary constants. It is easy to see that Icosh zl = 1 
occurs when IArl = 1, so that though the solution is 
continuous across r = IAI- 1 the derivative is not 
[in fact it does not exist in the form (10)]. Here we 
make use of one of the interesting properties of the 
solutions of the modified Mathieu equation, namely, 
that there is a plurality of forms for the solutions. 
It can be shown that an equally suitable set of 
solutions to (5) are given by 

'" Me ±v(z , q) = L C;r(q)e±(2rh). (11) 

with the same C;r! This solution converges uni­
formly for all finite z in the complex plane and so 
can be used to join the two regions r < IAI-1 and 
r > IAI- 1

• In the next section we do this type of 
joining in detail to enable us to get the S matrix. 

The behavior of <p(r) at the origin and infinity 
are both obtainable from the infinite asymptotic 
behavior alone of the M!3) (4). This is because we 
have 

M,(2qi cosh z) = M.(qi(Ar + I/Ar» 

= M.(kr + Vi/JoIr) 

and the argument of M, goes to infinity as r -+ ° 
and r -+ 00. Using the results proved in MS we have 

<p(r) -+ AC
2
;IYr exp [i(:: - V; - ~) J 

( 2Jo1 )1 [.(Vi V1r lI')J + B lI'vt r exp -'/, JoIr - 2" - 4 r-+O, (12a) 

<p(r) -+ A'(:J! exp [i(kr - V; - ~) J 
+ B'(:kY exp [-i(kr - v; - ~) J r -+ 00. (12b) 

Several things should be noted about (12). First 
the correct wavefunction does not in general have 
the same coefficients at the origin and at infinity, 
in other words, A rf A' and B rf B'. This is a result 
of the fact that if the A term in (12a) is continued 
across the point r = 1"A1-1 as explained above, the 
resulting expression will contain some of each of 
the A' and B' terms; similarly for the B term. 

The infinite behavior of <p(r) is exactly what we 
would expect and causes no difficulty. But at the 
origin, both solutions tend to zero while oscillating 
infinitely rapidly. To define a phase shift at infinity 
it would be necessary to choose the ratio A/B as 
some arbitrary parameter. This is essentially Case's 
parameter. 
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We now turn our attention to the more interesting 
case of a repulsive potential. 

IV. SOLUTIONS FOR REPULSIVE POTENTIAL 

We must now replace q everywhere in Sec. III 
by iq as can be seen from the relationships established 
at the end of II. These also show that we now have 

z = ±In (1/ V2)(1 - i)'Ar = ±In 'Ar =F ii1l'. 

Most of the results of III can be taken over directly 
since the convergence and asymptotic properties of 
the series given there have been proved for com­
plex C;" II, and z (see MS and BatemanI3

). The 
parameter II = lI(a, iq) is not well studied in the 
literature, though v(a, q) has been extensively in­
vestigated. Besides this difference in II, we see that 
our solution of (1) is of the form 

tp = ArlM;3l[qt('Ar + i/'Ar)] + BrtM!4) [q'('Ar + i/Ar)] 

= Ar'M;3l(kr + iV'/ltr) + BrtM~4)(kr + iV'/ltr). 
(13) 

As r -t <Xl we still have the forms (12b), but as 
r -t 0 it is easy to see that we have a finite solution 
only in the one case that B = OJ then 

tp(r) -t A(:!Vttr exp [-i(; + ~) ] exp ( _ ;') 

as r -t O. (14) 

This solution is unique6 in that any other solution 
finite at the origin is merely a constant multiple of it. 

Now the condition14 that lcosh zl > 1 for uniform 
convergence means that when z = -In (Ar) + iill' 
we can use (13) only when 'Ar < (2 - va)!, and 
when z = In (Xr) - ii1l' the solutions are valid 
only for Xr > (2 + va)!. 

In order to connect these two regions we must 
make use of the solutions Me:. given in (11). We 
choose some r1 such that 0 < r 1 < A -1(2 - va)! 
and write 

M!3)(r1} = aMe,(r1) + flMe_,(r1), 

M!3l'(r1) = txMe~(rl) + flMe~,(rl)' 
where a and {J are to be determined. Now at the 
point r = X-I we switch from z = -In (Xr) + li1l' 
to z = In (Xr) - ii1l', which means that the sign 
of az/ ar changes from minus to plus. Thus at this 

1& Bateman Manuscript Project (McGraw-Hill Book Com­
pany, Inc., New York, 1955), Vol. III. 

.. It is remarkable that in two books, Ref. 10 and 13, the 
condition Icosh 21 < 1 is stated to exclude only real 2 such 
that -1 :S 2 S 1. See p. 201 of MS for a diagram of the 
region in the complex 2 plane for which Icosh zl S 1. 

point we must have 

aMe;-)(X-1
) + flMe~:)(A-l) 

= 'YMe;+l(X- I
) + 8Me~:)(X-l), 

aMe~-"('A -1) + (JMe~-;'>'(X-l) 
(16) 

= -'YMe;+)'('A-1) - 8Me~:)'(X-t), 

where M(-) and M(+) refer to solutions for which 
z = -In (Ar) + iill' and z = In (Ar) - ii1l', respec­
tively. Using (16) to determine l' and 8 we then 
have for some r2 > A-I (2 + va)f 

'YMe.(r2) + 8Me_.(r2) =:: A'M!3)(r2) + B'M!4)(r2), 

'YMe~(r2) + 8Me~,(r2) =:: A'M;3l'(r2) + B'M;4l'(r2)' 
(17) 

We know from (12b) that the S matrix is given by 

S(k, l) = i[A '(k, l)/B'(k, l)]e-"T eil 
.. = eWI 

(kl • 

To evaluate A' and B' it is necessary to do some 
very tedious algebra and make use of the fact that 
the Wronskian of two independent solutions of the 
Mathieu equation is a constant. With our normaliza­
tion, MS gives these Wronskians as 

W(M;3l, M~4» = [3,4] = -4i/1I', 

[1,3] = -[1,4J = 2i/1l', (19) 

[1,2] = -[2,3] = -[2,4] = 2/11', 
where 

M!l) = !M!3l + !M!') I M~2l = -iiM!3) + !iM~". 
It is also necessary to use the relationships 

Me. = [me.(O)/M;l)(O)]M;ll 

and 

Me_. = [me.(O)/M<:!(O)](cos nM!1) - sin nM~2l). 

Making use of the explicit forms (11) we can finally 
write 

S(k, l) = ie-',r eilT [(R2 + 1)/(R2 + e-'hr)] 

with 

and 

M~l:(O) = (C:T1 

"" 

(20) 

X L (-1)8C:~J s«iq)!}J h+s«iq)!). (21) 
s~-~ 

In (21) the J's are the usual Bessel functions. As 
E -t 0 (or q -t 0) we show in the Appendix that 
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JI ~ l + ! and it is shown in MS thae5 C:;(O) = 0 
8 ~ 0 while C;"(O) ~ 0 and is finite. Now Jo(O) = 1 
and J ",.«iq)i) ~ q"'! as q ~ o. Hence we see that 
R ~ k- (I+t> as k ~ 0 and conclude that 8(0, l) = 1 
as indeed it should be. 

Unfortunately the determination of the behavior 
of the phase shifts as the energy becomes infinite 
is not such a simple problem. However it may be 
possible to investigate such behavior and the ques­
tion is currently being studied. 

The expressions comprising the 8 matrix though 
complicated are tractable for a computer calculation 
of scattering from an inverse fourth-power repulsive 
potential. As has recently become apparent16 the 
use of simple potentials such as the Yukawa gives 
a remarkable good fit to high energy p-p scattering. 
It would be of great interest to investigate the 
present potential because it lies in between the 
Coulomb (too long a tail for high-energy scattering) 
and the Yukawa (very short range). Such an in­
vestigation would help shed light on exactly where 
the transition between acceptable short-range po­
tentials and unacceptable long-range potentials 
comes. 
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APPENDIX 

As mentioned earlier in the paper, the solutions 
to the Mathieu equation take on a different form 
when the parameter JI is a real integer. All the 
properties we have proved in this paper can be 
shown to hold for these unusual cases as well; in 
fact the proofs are easier then. We have considered 
the more general case that JI is not a real integer. 

Though the derivations of various formulas for 
JI are generally given in M and MS for real q, a 
study of these derivations easily shows that they 
hold for complex q as well. The reason JI enters 
the problem at all is because the recursion relations 
will converge only for certain values of JI.

9 We give 
two formulas useful for computing JI. For small 
complex q we have 

2 1 2 5J12 + 7 4 

a = JI + 2(Jl2 _ 1) q + 32(Jl2 _ 1)3(l - 4) q 

911
4 + 58l + 29 6 8) + 64(Jl2 - 1)0(Jl2 _ 4)(112 _ 9) q + O(q • 

The author would like to thank Dr. Hadi Aly for We make use of this formula when q = 0 just below 
bringing the paper of Bose to his attention as well as (21), but in general it must be truncated and in­
for continued assistance, and also Professor Emil verted to find JI. More useful is 

cos JI7r = 
! 7r sin at

7r 2 [ I5a2 
- 35a + 8 .! 7r

2 
cos a!7r ] 4 

cos a 7r + 4al (a _ 1) q + 64(a _ 1)3(a _ 4)aat 7r sm a 7r - 32a(a _ 1)2 q 

+ [ 105a5 - 1155a4 + 3815a3 - 4705a 2 + I652a - 288 . t 
256(a _ 1)5(a _ 4l(a _ 9)a5/2 7r Sill a 1r 

7r
3 sin a'7r I5a2 

- 35a + 8 2 t ] 6 

- 384(a - 1)3al - 256a2(a _ I)4(a _ 4) 7r cos a 7r q + 

Having found JI by these means (or others available), 
the recursion relations are solved for the C;. by 
way of continued fractions as is explained in detail 
in Morse and Feshback or M where worked examples 

11 More exactly we have 

C. C .( rev + 1) ) 2181 
28 -+ 0 22881 rev + 8 + 1) q 

as q -+ O. See MS, p. 121. 
IS R. Serber, Phys. Rev. Letters 10, 357 (1963). 

are given. When JI is an integer the entire process is 
usually reversed so that one looks for the corre­
sponding value of a that makes JI an integer (this 
is the Mathieu eigenvalue problem). For small q 
the formula for C;. given in footnote 15 is useful, 
and there are many other formulas given in the 
literature for JI and C;. but usually only of use 
for special ranges of a and q. In any given situation 
it is necessary to search various references for any 
useful expressions. 
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We demonstrate the mathematical existence of a meson theory with nonrelativistic nucleons. A 
system of SchrOdinger particles is coupled to a quantized relativistic scalar field. If a cutoff is put on 
the interaction, we obtain a well-defined self-adjoint operator. The solution of the Schrodinger equa­
tion diverges as the cutoff tends to infinity, but the divergence amounts merely to a constant infinite 
phase shift due to the self-energy of the particles. In the Heisenberg picture, we obtain a solution 
in the limit of no cutoff. We use a canonical transformation due to Gross to separate the divergent 
self-energy term. It is shown that the canonical transformation is implemented by a unitary oper­
ator, and that the transformed Hamiltonian, with an infinite constant subtracted, can be interpreted 
as a self-adjoint operator. 

1. INTRODUCTION 

T HE main mathematical problem presented by 
quantum field theory is to establish the exist­

ence, or nonexistence, of relativistic interactions of 
quantized fields. The free fields are well-understood, 
but the Hamiltonians of relativistic interactions fail 
to exist as well-defined operators. Here we study 
the interaction of a field of spinless "nucleons" with 
a scalar "meson" field, where the nucleons are 
treated nonrelativistically. For most of our discus­
sion we may limit ourselves to a fixed number N 
of nucleons, since N does not change with time. 
In this model also the Hamiltonian H fails to exist 
as a well-defined operator. Despite this, we are able 
to associate with H a well-defined one-parameter 
group of unitary operators which describes in an 
unambiguous way the temporal development of 
states. 

If we put a cutoff K on the interaction Hamil­
tonian, we obtain a self-adjoint operator H K • The 
operators exp (-itH.) have no limit as K -7 co, 

but the divergence is of a very simple kind. There 
is a family of real constants E., which diverges 
logarithmically as K -7 co, such that exp (-it(H. -
NE.» does converge strongly to the unitary operator 
exp (-itb), where b is a self-adjoint operator which 
is bounded below. The operator b has the interpreta­
tion of the Hamiltonian H with the infinite self­
energy of the nucleons subtracted. Since a state 
is given not by a point in Hilbert space but by a 
ray, this implies that the state determined by 
exp (-itH.) 'It does converge as K -7 co. In the 
Heisenberg picture, if A is any bounded self-adjoint 
operator then exp (itH.)A exp (-itH.) converges 
strongly as K -7 co. 

This model has been discussed by GrossI and 
1 E. P. Gross, Ann. Phys. 19, 219 (1962). 

others, and it was known that the only divergence 
in the theory was the divergent self-energy. Gross 
found a canonical transformation, a modification of 
a dressing transformation used by Greenberg and 
Schweber/ such that, formally, eTHe-T = H' + NE, 
where E is an infinite constant and the self-energy 
terms for H' are finite in all orders of a perturbation 
expansion. We show that H' and eT have interpreta­
tions as well-defined operators on Hilbert space. The 
operator b referred to above is e-TH'eT, and once 
this is shown to exist the convergence theorem is 
not difficult. 

The author first studied the problem from the 
point of view of Feynman path integrals, and de­
scribed this approach to the Conference on Analysis 
in Function Space3 held at M.LT. in June 1963. 
It was there that he learned of the work of Gross 
which makes possible a much simpler and more 
complete treatment of the problem. 

We use some operator theory which, although 
known, is not entirely standard. These results are 
summarized in an appendix. 

2. STATEMENT OF THE THEOREM 

Our Hilbert space X is the tensor product of the 
space of nucleon wavefunctions and Fock space for 
the meson field. The meson field is relativistic, but 
we shall use nonrelativistic notation throughout. An 
element 'It of X is a sequence 1'It(n) I of functions 

2 O. W. Greenberg and S. S. Schweber, Nuovo Cimento 8, 
378 (1958). 

3 E. Nelson, "Schrodinger Particles Interacting with a 
Quantized Scalar Field," in Proceedings of a Conference on 
the Theory and Applications of Analysis in Function Space 
held at Endicott House in Dedham, Massachusetts June 9-13, 
1963. Edited by W. T. Martin and 1. Segal (Massachusetts 
Institute of Technology Press, Cambridge, Massachusetts, 
1964), p. 87. 

1190 
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on R3Ni-3" with 11'1'11 < 00, where 

II\lFW = i: J .. , J dx! '" dXN dk! '" dkn 
n-O 

X 1\lF(n) (Xl , ... 'XN;kl' ... ,kn)12, 

and each win) is symmetric in kl' ... , k". It will 
not be necessary to specify the statistics of the 
nucleons, and X could be replaced by the subspace 
of all w which are antisymmetric (or symmetric) in 
the nucleon variables Xl, ... , XN' 

Let M, the nucleon mass, be a strictly positive 
constant, and let 

1 N 2 

Hnuo = 2M 1: pm, 
m-I 

where -p~ = V~'" is the Laplacian in the variable 
x .. with the usual domain which makes it a self­
adjoint operator. Let J.I., the meson mass, be a 
strictly positive constant, and let 

w(k) = (k2 + J.l.2)i. 

Define H mes by 

(Hme.w)(") 

on the domain '.D(Hme.) of all w in X such that 
{ (H ,T,) (,,)} . .. If1l 

me. '" 18 agaIn In ... ". 
The symbolic annihilation operators ak and crea­

tion operators a~ are given by 

(akw)''') (kl, '" ,k,,) 

= (n + l)iw("+l)(k, kl' .,. ,k,,), (1) 
n 

(a~w)(")(kl' '" ,k,,) = n- i 1: o(k - k i ) 
i=l 

X w(n-l)(k l , ••• ,ki' ... ,kn), (2) 

where k; indicates that k; is omitted. We have 
suppressed the nucleon variables in (1) and (2), 
and shall frequently do so when considering operators 
which do not affect them. The formal expression of 
Hme. in terms of ak and a~ is J w(k)a~ak dk. Formally, 
[ak, a~'J = o(k - k'). 

Let n be the number of mesons operator defined by 
(nw)(n) = n\lF(n) 

on the domain '.D(n) of all \IF in X such that {n\lF(n)} 
is again in X. 

If t is in £2(R
3
), IItll; = f It(kW dk < to, then 

f f(k)ak dk and f f(k)a~ dk, defined by 

(J f(k)ak dk\lF) (n) (k
l

, ••• ,k,,) 

= (n + 1); f f(k)\lF("+l)(k, kl' ... ,k,,) dk, (3) 

and 

(J f(k)a~ dk\lF) (n) (k l , ••• ,k,,) 

" 
= n-i '" fCk,.)'T,(n-O (kl, '" k

A 

k,,) £..J '" , ;,"', , (4) 
;=1 

are well-defined operators on '.D(ni). By the Schwarz 
inequality, 

Also, 

IIJ f(k)ak dk\lF11 S 111112 IlniwlJ, 

IIJ f(k)a~ dk\lFjj S Ilflb II(n + 1)1\lF11· 

for all WI and '1'2 in '.D(ni). 

(5) 

Notice that if f is an arbitrary measurable func­
tion, then J l(k)ak dk is a densely defined linear 
operator on the domain of all \IF in X such that the 
integrals on the right-hand side of (3) exist and 
define an element of X. However,- this operator will 
fail to have a closure if f is not in £2, so that the 
adjoint operator will not be densely defined. In fact, 
only \IF = 0 is in the domain of J f(k)a~ dk if 1 
is not in £2. Thus, annihilation operators are better 
behaved than creation operators. This is why it is 
advantageous to have creation operators to the 
left in an operator product, where they may be 
moved to the other side of an inner product as 
annihilation operators. 

Let K S to, and define 

Let 

x.(k) = 1, Ikl < K, 

0, Ikl 2 K. 

<P.(x) = [2(2'1I-)3ri J w(kfl 

X (akeik'X + a~e-ik')XK(k) dk, 
(6) 

where g is a real constant. Except for the non­
relativistic notation, <P.,(x) is the scalar field as 
given in Schweber.4 Since w(k)-l is not in £2(R3

), 

ip~(x) and HI~ are merely formal expressions. The 
introduction of the cutoff K ensures that, for K < to, 

HrK is a well-defined operator on the domain '.D(ni). 
4 S. S. Schweber, An Introduction to Relativistic Quantum 

Field Theory (Row, Peterson, and Company, Evanston, 
Illinois, 1961), p. 177. 
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To describe the interaction of the nucleons with 
the meson field we study the behavior of exp ( -itH.) 
as ,,~ 00, where 

The integral 

E. = -2Mg2[2(2'lIlr l 

Therefore, to find eT'H.e- T• we need oilly substitute 
(12) and (14) into 

X ~ J w(krl(ake,k'"'' + a:e-ik·""')x.(k) dk. 

This yields 
X J (2Mw(k)2 + W(k)~)-lX.(k) dk (8) eT'H.e-T• = (2M)-1 E (p~ + A!. + A!: 

is divergent for" = 00, but if " < 00 then E. is 
a well-defined real number. 

Theorem. For each" < 00, H. is a self-adjoint 
operator on X. There is a unique self-adjoint operator 
Ii on X such that, for all real t and all 'l1 in X, 

lim e-il(H.-NE.)'I' = e-1IH'I'. (9) 

The operator Ii is bounded below. 

3. THE CANONICAL TRANSFORMATION 
OF GROSS 

We shall proceed formally at first. Let K < 00, 

and let the function p and the operator T. be 
given by 

R(k) = _g[2(21r)3riw(kr! (1 - (k» (10) 

m 

+ 2A!.·Am. + [A .... , A!.] + 2(p",·A .... + A!.·p .. ) 

+ {[A",., Pm] + [pm, A!.]}) + Hmo. 

+ { ~ J w(k)p(k)(ake-·k'"'' + a:e,k·""')x.(k) dk} 

+ ~ ~ J (w(k)p(k)2 + g[2(21r)3riw(krip(k» 

X e'k'(""'-"I)x.(k) dk + {HI'}' 

Now 

[Am., Pm] = J k2p(k)ake'k·""x.(k) dk, 

[Pm, A!.] = J k2p(k)a:e-·k·""X.(k) dk, 

(15) 

(16) 

,., w(k) + k2j2M XK, 
so that, by the definition (10) of P(k), the terms of 

T. = f J p(k)(ake,kox,. - a:e-ik''''")x.(k) dk. (11) (15) enclosed in braces { } add up to H1K• Similarly, 
",-1 

We shall compute eT'H.e- T" which for" = 00 and 
K = 0 is the transformation considered by Gross.l 
For reasons which will become apparent in Sec. 4, 
we shall choose a fixed large value of K, and consider 
T. for finite values of K tending to 00 and for" = 00. 

We shall always assume that" > K (otherwise 
T. = 0). 

Observe that 

eT'Pme-T, = pm + Am. + A!., (12) 

where 

Am. = J k/3(k)akeik ·""x.(k) dk, 

A!. = J k/3(k)a:e-'k·x,.x.(k) dk, 
(13) 

since [T., Pm] = Am. + A!. and [T., [T., Pm]] = O. 
Similarly, 

N 

eT'ake- T• = ak + E P(k)x.(k)e-'k''''', 
(14) 

N 

eT'a:e-T, = a: + E P(k)X.(k)e'k'''''. 
.. -I 

[Am., A!.J = J k2P(klx.(k) dk, 

so that (2M)-1 Em [Am., A!J and the terms m = l 
in the double sum add up to N(E. - EK ). Therefore, 

eT'H.e-T• = H~ + N(E, - EK ), (17) 

where 

H~ = Ho + (2Mr1 E (A~. + A!: + 2A!.·A ... 
'" + 2(p",·A",. + A!.·p",» + V. + H 1K, (18) 

Ho = Hnuo + Hrn •• , (19) 

V. = ];t J (w(k)p(k)2 + g[2(21r)3riw(kri p(k» 

X e-,k.(x .. -xl)x.(k) dk. (20) 

Now we turn to questions of mathematical exist­
ence. By (10), P is in .e(R3

), so that for " :s; 00, 

the right-hand side of (11) is a well-defined skew­
symmetric operator on the domain !D(nt). We define 
T. to be the closure of this operator. 

Lemma 1. For K :s; CD, the operator T. is skew-
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adjoint, T~ = -T., so that eT, and e- T, are well­
defined unitary operators. For all i' in X, 

(21) 

Proof: Let X(n) be the subspace of all i' in X 
such that i'(j) = 0 whenever j > n, and let 

'" 
x(oo) = VX(n). 

By (5), if i' is in X(n) then 

By Lemmas 1 and 2, if " < 00 then eT'H.e- T, is 
a well-defined self-adjoint operator. 

Lemma 3. If" < 00, (17) is true. 

Proof: First, it should be remarked that there 
is something to prove: the computation made in 
the beginning of this section shows only that for 
i' in a suitable domain on which [T., H.] and 
[T., [T., H.ll are defined, say on X( (0) ('\ ~(Ho), 
that 

I IT.i' I I ~ 2N 11.8112 (n + 1)1 11i'11, 
(22) (H. + [T., H.])i' = (H~ + N(E. - EK»i', (24) 

and T.i' is in X(n + 1). From this it follows that, 
for all real sand i' in X( 00 ), 

'" :E Isl i I IT!i' I Iii! < 00. 
i-O 

Since X( (0) is dense in X, this implies6 that T~ = 
- T., and that, for i' in x( (0), 

'" 
eaT,i' = :E siT!i'Ii!. 

j-O 

Since we have estimates on the tail of this series 
which are independent of ", and since for each j, 
T!i' ~ T~i' for i' in X( (0), this implies that (21) 
holds for all i' in X( 00 ), and consequently for all 
i'in x. 

Lemma 2. For" < 00, H. is self-adjoint, and 
~(H.) = ~(Ho). 

Proof: It is clear that Ho [see (19)] is self-adjoint, 
since it is the sum of two positive commuting self­
adjoint operators. [There is a measure space X such 
that X is unitarily equivalent to ,e(X) in such a 
way that Hnu. and Hme. correspond to multiplication 
by positive measurable functions hnu• and hme., re­
spectively. For1/; in ,,e2(X), (hnu• + hme.) 1/; is in 
,,e2(X) if and only if hnu.1/; and hmo .1/; are, since hnu• 

and hm •• are positive, so that Hnu. + Hmo. is unitarily 
equivalent to multiplication by hnuo + hmo., and so 
is self-adjoint.] 

By an argument due to Kato, 6 we need only show 
that there is an a < 1 and a b < 00 such that 

I IHI.i' I I ~ a I I Hoi' I I + b 11i'11 (23) 

for all i' in ~(Ho). By (5), /lHIKi'/i ::; C II(n + 1)1i'/1, 
where C is a finite constant (depending on ", " < (0). 
For all E > Othereisab' < 00 such that I/(n+l)ii'/I ::; 
E Ilni'11 + b' 11i'11 ::; EP.-l I I Hoi' I I + b' 11i'1I, so if 
we choose E < C-1p., then (23) holds. 

& See E. Nelson, Ann. Math. 70, 572 (1959), Lemma 5.1. 
I T. Kato, Trans. Am. Math. Soc. 70, 195 (1951), proof 

of Lemma 5. 

[T., [T., H.]]i' = O. 

Let us use C to denote constants which are finite 
for " < 00. Different occurrences of C are not 
necessarily the same. Analogously to (22), we find 
that for all i' in x(n) ('\ ~(Ho), 

I I HoT.i' I I ~ C(n + 1)1(1 I Hoi' I I + 11i'ID, 

so that Hoe-aT,i' is an entire function of s, for i' 
in x( (0) ('\ ~(Ho). Since H. + s[T., Ii.] sends 
X(oo) ('\ ~(Ho) into X(oo), e-·T'(H. + s[T., H.Di' 
is an entire function of s, for i' in X( (0) (\ ~(Ho), 
by the proof of Lemma 1. By (24), these two func­
tions of s have the same Taylor series at s = 0, 
so they are identical, and (17) holds when applied 
to any i' in X( (0) (\ ~(Ho). 

We shall show that ~(H~) = ~(Ho) and 

IIH~i'11 ~ C(IIHoi' I I + I Ii'I D (25) 

for all i' in ~(Ho). If we assume this, then by (17) 
for i' in X( (0) (\ ~(Ho), 

I IH.e-T,i' I I = I leT'H.e-T,i' I I ~ C(IIHoi'11 + 11i'ID, 

and so by (23), 

I IHoe-T,i' I I ~ C(IIHoi'11 + 11i'ID 

for all i' in X(oo) ('\ ~(Ho). Since X(oo) ('\ ~(Ho) 
is dense in ~(Ho) in the norm I IHoi' I I + 11i'11, 
it follows that e- T

, maps ~(Ho) into itself. Similarly, 
eT

, maps ~(Ho) into itself. (One way to see this 
is to replace g by -g.) Therefore, ~(eT'H.e-T,) = 
~(Ho)=~(H.)= ~(H~). Again, sinceX( (0) (\ ~(Ho) 
is dense in ~(Ho) in the norm IIHoi'1i + /li'II, (17) 
holds for all i' in ~(Ho), and since this is the domain 
of the operators on the two sides of (17), the two 
operators are equal. 

It remains to establish (25). Now 

IIA!.i'1i ~ C lI(n + 2)I(n + 1)1i'1i 

::; C(IIHme.i'1i + 1Ii'ID ::; CO I Hoi' II + 1Ii'ID, 

and similarly for A!~ and A!. ·A ..... Also, IIA! •• Pm i'1/ ::; 
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G lI(n + I)iPmwll, and since (n + I)i and Pm com­
mute, this is ~ C(//(n + I)wll + IIp~wll) ~ 
G(I/Howl/ + I/wl/). Similarly, if we use (16). 

I/Pm·Am.wl/ ~ IIAm"Pmw/1 + I/[Am., Pm]W// 

~ C(I/Howl/ + I/wl/). 

By (23), I/HIKWI/ ~ C(I/Howl/ + I/wl/), so we need 
only show that I/V.wl/ ~ C(IIHowll + IIwi/). For 
later use, we prove a stronger result. 

Lemma 4. For all E > 0 there is a b < (X) such 
that, for all K ~ ro, 

I/V.wl/ ~ E I/Hgwl/ + b I/wl/. 

Proof: By (20), V. = Lm"'l W.(xm - Xl) where, 
even for K = ro, W.(x) is in £·(R3) for 2 ~ q < ro, 

since (w(k).a(k)2 + U[2(2·lIlriw(k)-i.a(k» is in £V(R3
) 

for 1 < p ~ 2. (We use the Hausdorff-Young 
theorem.7

) We need only show that for all E > 0 
there is a b < (X) such that 

I/WKu/i ~ E I/pul/ + b /lull (26) 

for all u in £2(R3) in the domain of P (I/i)V, 
since we may make a linear change of variables 
which carries Xm - Xl into Xl' This is a standard 
Soboleft' inequality, and may be proved as follows. 
Let tl be the Fourier transform of u. By the Plan­
cherel theorem, (1 + /p/)u E £2(R3). But (1 + Ip/)-l 
is in £3+a(R3) for all a > 0, so that by the Holder 
inequality,u = (1 + /p/)-I(I + /p/)tlin in £6/5+ a (R3) 
for all a > O. By the Hausdorft'-Young theorem,7 

u is in £.' (R3
) for all q', 2 ~ q' < 6, and 

/lul/., ~ C.,(llpul/ + /lui /), (27) 

where C.' is a constant depending only on q'. 
Choose q and q' so that 2 ~ q < (X) and 2 ~ q' < 6 
and l/q + I/q' = !j for example, q = q' = 4. 
We may write W.= W.o+ W. I where I/W.ol/. C.' ~ E 

and I/W.d/., ~ b', where b' is independent of K. 

Then, by the Holder inequality and (27), 

I/W.ul/ ~ I/WKoul/ + b' I/ul/ ~ I/WKO/l. I/ul/., 

+ b' /luI/ ~ E I/pu/l + (E + b') /lu/l. 

This concludes the proof of Lemma 4, and con­
sequently of Lemma 3. 

4. THE TRANSFORMED HAMILTONIAN 

Our main task now is to assign a meaning to the 
expression H ~ as a self-adjoint operator. Notice that 

7 See A. Zygmund, Trigonometric Series (Cambridge Uni­
versity Press, Cambridge, England, 1959), 2nd ed., Vol. II, 
p.254. 

since k.a(k) is not in £2, A!., is not well-defined and 
H ~ is meaningless as it stands. 

Consider an analogy from the theory of partial 
differential equations. The expression 

L = L -; ai; -; + L b; -; - L -; 6; 
;.; ax ax ; ax ; ax 

is meaningless as a partial differential operator un­
less differentiability conditions hold for the co­
efficients aii, bi. Formally, however, (u, Lu) = 
B(u, u), where the Hermitian form B is given by 

B(u, u) 

__ " (au ii au ) R" ( ; au ) - ~ axi' a axi + 2 e ~ u, b -;;7 . 
1.,1 J uX 

(More properly, the Hermitian form B(u, v) is 
obtained from B(u, u) by polarization.) This is 
well-defined for all u in £2 whose derivatives are 
in £2, if the aii and bi are merely bounded and 
measurable. If in addition the matrix a ii is uniformly 
positive-definite, one can construct a unique self­
adjoint operator L such that (u, Lu) = B(u, u) 
for all u in <J)(L). We shall do something quite 
similar for H :,. 

Let K ~ ro. Formally, by (18), 

(w, H~w) = (Hgw, H~w) + B.(w, w), (28) 

where 

B.(w, w) = M- I Re L I «n + I)iw, (n + IriA!.w) 
m 

+ (Am.w, Am.w) + (PmW, Am.w)} 

+ (w, V.w) + (w, HIKW). (29) 

Lemma 5. For all K ~ ro, B.(w, w) is well-defined 
for all w in <J)(H~). For all E > 0 there is a K < (X) 

and a b < (X) such that 

/B.(w, w)/ ~ E(H~w, H~w) + b(w, w) (30) 

for all K ~ (X) and all w in <J)(Hg). Also, 

(31) 

uniformly on any set of W in <J)(H~) for which //Hgw// + 
I/wl/ is bounded. 

The proof will be given later. By Theorems A 
and B of the Appendix, Lemma 5 has the following 
immediate consequence. 

Lemma 6. For all K ~ ro, there is a unique self­
adjoint operator H~ with <J)(H~) C <J)(H~) such that 
(28) holds for all W in <J)(H~). The operators H~ are 
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bounded below. For all real t and all w in X, 

Using this, we may prove the theorem (stated 
at the end of Sec. 2). By Lemma 2, if K < ex> then 
H. is self-adjoint. By Lemma 3 and the uniqueness 
assertion of Lemma 6, if " < ex> then 

H~ = eT'(H. - NCE, - EK»e-T" 

so that for all real t, 

By Lemma 6, this converges strongly to e-iI(H~'-NEK) 
as K ~ ex>. By Lemma 1, therefore, e-il(H.-NE,) 
e-T'e-j/(H.'-NEK)eT• converges strongly to 

Let fI = e-T~(H:' - NEK)eT~. Then (9) holds, 
and fI is bounded below since H:, is. The uniqueness 
assertion of the theorem is trivial. Therefore, to 
conclude the proof of the theorem we need only 
establish Lemma 5. 

Let C1(K)2 = f k2~(k)2W(k)-1 dk. [Recall that, 
by (10), ~(k) contains the factor 1 - xK(k).] Then 
for all " ::; ex> and w in :D(Hg), 

IIAm.wW = ~ f ... f I f ~(k)eik'''mw(kr;w(k); 

X (n + 1)tw(n+ll(k, kll ... ,k,.)x.(k) dkl2 dk1 .. , dk,. 

::; C1(K)2 ~ f ... f w(k)(n + 1) 

X Iw("+l)(k, kll .. , ,k .. )12 dk dk1 ... elk" 

= C1(K)2 IIHL.wW ::; CI (K)2 IIH~wW, (32) 

by the Schwarz inequality and the fact that, due 
to the symmetry ofw(n+l), we may replacew(k)(n+ 1) 
by w(k) + w(k1) + ... + w(k,.). Similarly, 

II(Am ", - AmK)wW ::; C1(,,)2 IIHgwW, (33) 

where C1(,,) is, of course, CI(K) with K replaced 
by". Also, 

IIPmwW ::; 2M IIH~wW. (34) 

The inequalities (32), (33), and (34) prove (30) and 
(31) as far as the terms (Am.w, A",.w) and (P",w,A .... w) 
of B. are concerned, since C I (K) is arbitrarily small 
for K large enough. 

Let C2(K)2 = f k2~(k)2W(k)-t dk. Then, for all 
" ::; ex> and w in :D(H~), 

II(n + I)-lA~,wW = ~ f ... f IJf k'~(k')eik"""w(k'ri 

X k~(k)eik''''''w(krtw(k')tw(k)t(n + 2)tw(n+2)(k', k, kl' ... ,k .. h.(k)x.(k') dk dk'12 dk l ••• dk,. 

::; C2(Kt ~ f ... f wCk,)tw(k)l(n + 2) Iw(n+2)(k', k, kl' .. , ,k,.)1 2 dk' dk dk1 ... dk,. 

::; C2(K)4 IIH~e.wW ::; CzCK)4 IIHgwW, (35) 

where we have used w(k')iw(k)' ::; !(w(k') + w(k» 
and symmetrized. Similarly, 

IICn + lr!(A~", - A~K)WW ::; C2(,,)4 IIH!wW. (36) 

Also, 

II(n + l)!wW ::; JJ.-
I IIHiwW + IIwW. (37) 

The inequalities (35), (36), and (37) prove (30) and 
(31) as far as the term «n + l)tw, (n + l)-!A~.w) 
in B. is concerned. 

Lemma 4 proves (30) as far as the term (w, V.w) 
is concerned, and the method of proof establishes 
(31) for it. 

It remains to consider (w, HIKW). By (5), there 
is a constant C such that I IHIKWI I ::; C lI(n + I)iwll, 
so that by (37) there is a constant C such that 

IIHIKWIl ::; C(IIHtwll + Il'lr/l). Thus 

lew, HIKW) I ::; C(lIwllllHgwll + IIwW). (38) 

For all E > 0, 211wll IIHt'lrll ::; E IIHg'lrW + E -I /lwW, 
so that (38) proves (30) for the term (w, H1KW). 
This term is independent of K, so (31) holds trivially 
for it. This concludes the proof. 

5. REMARKS 

Let us now denote the Hilbert space which we 
have been calling X by X N , where N is the number 
of nucleons, and let now 
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Consider the Hamiltonian 

H = (2M)-1 J Y;*(X)p2y;(X) dx + J w(k)atak elk 

+ g J 1/I*(x)cp(x)1/I(x) dx, 

where y; is a nonrelativistic complex scalar field 
(of fermions or bosons). Since the number of nucleons 
is conserved, this is essentially the same problem 
as the one we have studied. If we put a cutoff K 

on the interaction we obtain a self-adjoint operator 
H., and exp [-it(H. - mE.)]'I' converges as K -+ CD, 

where m is the number of nucleons operator m = 
J 1/I*(x)1/I(x) dx. If 'I' is in :JCN for some N, then by 
the theorem, although e-itH,'I' diverges as K -+ CD, 

the state determined by it converges, in the sense 
that if A is any bounded self-adjoint operator, 

(e-ilH,'I', Ae-itH,'I') -+ (e-itH'I', Ae-ifH'I'). (39) 

However, if 'I' has nonzero components in several 
:JCN , this is no longer true, and the left-hand side 
of (39) diverges in general. It is possible to lire­
normalize" H by subtracting infinite constants on 
the :JCN , but there is an arbitrariness in this process 
in that each infinite constant may be changed by 
a finite constant, giving different rules for prop­
agating states which have components in several :JCN • 

If one takes the point of view that H, although it 
does not exist, is the true Hamiltonian, then the 
theorem may be interpreted as giving meaning to 
the state (ray) e-iIH'I', provided that 'I' lies in :JCN 

for some N. Thus the dynamics of the interaction 
impose a superselection rule. 

The case of a field interacting with a fixed point 
source-which is essentially the limiting case M = CD 

-is formally simpler but is also more singular. In 
this case fJ is no longer in .c2 (R3), and eTm is not 
implementable by a unitary transformation. A 
rigorous discussion of this situation has been given 
by Shale.s The fact that in our case eTm is unitarily 
implementable depends strongly on the fact that 
our particles are nonrelativistic, which produces the 
term k 2/2M in the denominator of fJ. 

It would be interesting to have a direct description 
of the operator b. Is :D(b) n :D(H~) = O? 
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APPENDIX: A VARIANT OF THE FRIEDRICHS 
EXTENSION THEOREM 

There is a complete equivalence between bounded 
self-adjoint operators and bounded Hermitian forms. 
The Friedrichs extension theorem gives conditions 
under which an unbounded Hermitian form gives 
rise to an unbounded self-adjoint operator. We shall 
develop this theory in a form suitable for our 
purposes. 9 

Theorem A. Let H 0 be a positive self-adjoint operator 
on a Hilbert space :JC. Let B('I'l' '1'2) be a Hermitian 
form defined for all '1'1 and '1'2 in :D(H~), such that 
for some constants a < 1 and b < CD, 

IB('I', '1')1 ~ a(H~'I', H~'I') + b('I', '1') (AI) 

for all 'I' in :D(Hg). Then there is a unique self-adjoint 
operator H' with :D(H') C :D(Hg) such that for all 
'I' in :D(H'), 

('1', H''I') = (Hg'l', Hg'l') + B('I', '1'). (A2) 

The operator H' is bounded below by -b. 

Proof: Let :D = :D(Hg). Then :D is a Hilbert space 
with respect to the inner product 

('1'1' '1'2):0 = (1 - a)(Ht'l'l' Hg'l'2) + ('1'1' '1'2)' 

(The space :D is complete since H~ is a self-adjoint, 
and hence closed, operator.) It is convenient to 
introduce the Banach space :D* of all continuous 
linear functionals on :D. If '1'0 is in :JC then 'I' -+ ('1'0, '1') 
is an element of :D*, and is the zero element of :D* 
if and only if '1'0 = 0 (since H~ is self-adjoint and 
hence densely defined). If '1'0 is any element of :D* 
and 'I' is in :D, we denote the value of '1'0 on 'I' by 
('1'0, '1'). Thus we may regard :JC as a subspace of 
:D*. If '1'1 is in :D, define A 'I' 1 to be the linear functional 

'It -+ (Ht'lt1 , H~'It) + B('ltl' 'It) + (b + 1)('1'11 '1'). 

Thus A 'I' 1 is in :D*. Note that (A 'I' 1, 'I' 1) ~ ('1'1, '1'1):0, 
so that IIA'I'lll:o. ~ 11'1'111:0' Consequently, the linear 
operator A : :D -+ :D* has closed range. Since :D is 
a Hilbert space, it is reflexive, and so :D* is reflexive. 
That is, every continuous conjugate-linear functional 

.9 For .a more gene~al result, see J. L. Lions, Equations 
Differenttelles Operattonnelles et Problemes au:c Limites 
(Springer-Verlag, Berlin, 1961), Chap. II, Sec.!. 
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on :0* is of the form 'li l -t ('lil) 'li) for some 'li in :0. 
Suppose 'li in :0 is orthogonal to the range of A. 
Then in particular, (A'li, 'li) = 0, so that ('li, 'li):o = 0 
and 'li = O. Therefore the range of A is both closed 
and dense, so that A maps :0 onto :0*. Let A' he 
the restriction of A to those 'li in :0 such that A'li 
is in x. Recall that :0* ~ X ~ :0, so that A' so 
defined is an operator on X with domain contained 
in :0. Since B('li}l 'lt 2 ) is a Hermitian form, A' is a 
symmetric operator, and clearly (A''li, '1') 2: ('li, '1') 
for all 'It in the domain of AI. Since the range of A' 
is all of X, A' is self-adjoint. Define H' = A' - (b+ 1). 
Then H' is self-adjoint, H' is bounded below by 
-b, :o(H') C :0 (Hi) , and for all 'I' in 'J)(H'), (A2) 
holds. 

To see that H' is unique, suppose that H" also 
has these properties. By polarization, 

('I'll H"'li2) = (Hiw11 H~W2) + B(wI' 'lJf2) (A3) 

for all 'li l and 'li2 in :O(H"). For fixed '1'2 in :o(H"), 
'lt1 -t ('li1' H"'li2) is continuous in 'li1 for WI in X 
and consequently for '1'1 in :0, so that (A3) holds 
for all 'lil in :0. Therefore H" + (b + 1) is the 
restriction of A to :O(H"). By the construction of 

H', this means that H' is an extension of H", and 
since H' and H" are self-adjoint, H" = H', 

Theorem B. Let Ho be a positive self-adjoint operator 
on a Hilbert space X, and let B.(w1 , 'lJf2 ) for K ~ co 

be a family of Hermitian forms on 'J)(Ht) satisfying 
(AI) with fixed a < 1 and b < co, and let H~ be 
the corresponding self-adjO'int operators. Suppose that 

limB.{'li, '1') = B",('li, 'li) 
K_", 

uniformly an any set of 'It in :O(Ht) for which IIHt'lill + 
1/'1'11 is bounded. Then 

lim e-itH.,'li = e-itH=\fr 
K~ .. 

for all real t and all 'I' in X. 

Proof: Let A be imaginary. Then A - H ~ converges 
uniformly to A - H ~ as mappings of :0 into :0*, 
so that (A-H~)-l converges uniformly to (A-H~)-l 
as mappings of :1)* into 'J), and consequently of X 
into X. The theorem now follows from a result of 
Trotter. 10 

10 H. F. Trotter, Pacific J. Math. 8, 887 (1958), Theorem 
5.1. 
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A tech~que is develope~ for the statis~ical description of multiple-valued functions. For the special 
case of smgle-valued functlOD;s, the relatIons developed a!e shown to reduce in a natural way to the 
customary ones. TransformatIon laws are developed relatmg the statistical descriptions of a multiple­
valued function in two coordinate systems. The relationship of the present work to the Rice formula 
for t~e zeros of a ra~don: functi~n is s.ho~. The statistical.description of homogeneous, isotropic, 
multiple-valued functIons m two dImenslOns IS developed. PrevlOusly known results regarding expected 
arc length of random functions are obtained using the present technique. 

1. INTRODUCTION 

SEVERAL recent papers1
•
2 have dealt with the 

expected contour length and expected area of 
multiple-valued random functions. These papers 
have avoided the problem of the general statistical 
description of multiple-valued functions. Since many 
physical problems give rise to multiple-valued func­
tions which should be described statistically, (e.g., 
the contours of constant concentration in a turbulent 
mixing problem, or the contours of constant density 
in the turbulent flow of a compressible medium), 
it is of interest to develop such a description, in 
order to provide tools with which to handle other 
questions arising from such functions. 

The arguments presented here are intentionally 
heuristic, and the cases considered are intended to 
be the simplest possible. Generality has in no sense 
been attempted. No doubt many points of interest 
lie in the more subtle cases which are excluded; 
it is desired, however, to present the main ideas 
as clearly as possible. 

The discussion in this paper will be confined to 
the plane; the generalization to higher dimensions 
will be clear. For simplicity we have in mind a line 
drawn on the plane, (Fig. 1) this line having a slope 
defined everywhere (in some Cartesian coordinate 
system) except at points where the line crosses 
itself. That is to say, the only points at which a 
slope cannot be defined by rotating to a different 
coordinate system, are points where the line crosses 
itself. At such points, as many slopes can be defined 

.. This work was supported by the Bureau of Naval 
Weapons under contract Nord 16597. 

t Professor of Aeronautical Engineering, Garfield Thomas 
Water Tunnel, Ordnance Research Laboratory, and Aero­
nautical Engineering Department, The Pennsylvania State 
University. 

1 S. Corrsin, Quart. Appl. Math. 12,404 (1955). 
2 S. Corrsin and O. M. Phillips, J. Soc. Indust. Appl. 

Math. 9, 395 (1961). 

as there are branches present at the crossing. In 
order to avoid difficulties we will specify that the 
line has no ends in the finite part of the plane, except 
those which occur at crossings. In such a case the 
slopes at the crossings are to be defined as limits 
from one side. We wish specifically to exclude limit 
points of crossings and similar phenomena. A some­
what more formal way of specifying such a function 
is to say, that for a given coordinate system, at 
almost every value of the abscissa, the function 
will take on a denumerable set of values and this 
set will contain no limit points. The function is 
continuous and differentiable in the sense that the 
sets corresponding to adjacent values of the abscissa 
contain values whose differences (or the ratio of 
whose differences to the separation) will tend to 
the appropriate limit as the separation is reduced 
to zero. This will be true almost everywhere in some 
coordinate system, and the remaining points can 
be taken care of as one-sided limits. 

We begin by selecting a particular coordinate 
system. In this system we consider an ensemble 
of multiple-valued functions I(x, {J) of the type 
described above, where {3 is an ensemble parameter 
lying in the closed unit interval, i.e., 

(3 E [0, 1]. 

THE SIMPLE DENSITY 

Let us define a random indicator function 

J 1, u ~ I(x, (3) < u + .:lu, 
cp(u, .:lu; x, (3) = ·l 

o otherwise. 

(1) 

(2) 

Thus, for specified values of x and (3, cp is unity 
if I(x, (3) takes on at least one value lying in the 
interval [u, U + .:lu). The function cp is a single­
valued function. It is sufficient for subsequent pur-

1198 
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poses to require that all such functions so defined 
be Lebesgue-measurable in {3. 

Consider the quantity 

{ <p(u, AU; x, (3) d{3. (3) 

By definition for specified values of x and u, this 
is a positive nondecreasing function of Au. It is 
bounded below and above by zero and unity, re­
spectively. It is, in fact, simply the probability of 
f(x, (3) taking on at least one value in the interval 
[u, u + AU), if {3 is uniformly distributed, as we 
shall assume. We will not make the assumption that 
its limiting value is unity as u ~ - co, Au ~ + co , 

since we may wish to consider, for example, functions 
which, with probability unity, lido not occur" (i.e., 
take on no values) at certain values of the abscissa. 

Instead, we will assume that 

1. n <p(u, AU; x, (3) d{3 P ( ) 1m A = r U, x 
~,,-o ... u 

exists for all u and x. (4) 

Since the values assumed by f(x, (3) for fixed x and (3 
are denumerable and have no limit points, p/(u, x)du 
is the probability that f(x, (3) take on exactly one 
value in [u, u + du), for vanishingly small du. 

Now, we must ask what will be the value of 

i:'" P/u, x) du. (5) 

This will not necessarily be unity, as can be seen 
from the following argument. In the case of single­
valued functions f(x, (3), integrals of the form 

i:'" F(u)Pr(u, x) du (6) 

are expectations. For a single-valued function the 
events A: "f(x, (3) is close to a" and B: "f(x, f3) is 
close to b" (a ~ b) are mutually exclusive. For a 
multiple-valued function, they are not, since in a 
certain number of cases the events can occur simulta­
neously. Thus, in computing the probability of the 
occurrence of A or B (or both) we must use 

peA V B) = peA) + PCB) - P(AB), (7) 

that is, the overlapping region must be subtracted, 
since it is counted twice. Thus the sum 

peA) + PCB) = peA V B) + P(AB) (8) 

is a probability only in the case of mutually exclusive 
events. Such a sum, being of the form of (6) is, 
in general, an expectation. In fact, (5) is the expecta-

FIG. 1. A typical mUltiple-valued ensemble member. 

tion of the count-unity each time an event occurs. 
(5) is thus the expected "valuedness". The statement 
that the value of unity for (5) corresponds to cer­
tainty of occurrence (i.e., certainty that the function 
takes on some value) is erroneous. When one makes 
the initial assumption that one is dealing with a 
surely single-valued function, then the value of 
unity for (5) is simply a consequence-the expected 
valuedness of a surely single-valued function is 
unity. On the other hand, the value of unity for 
(5) does not imply single valuedness: for instance, 
a function which is exactly double valued with 
probability one-half, and does not occur with the 
same probability, will also give the value unity 
for (5). 

We can examine this equation more formally. 
Imagine the u axis to be divided by a mesh, 

(9) 

Now consider 

The integrand on the right can be interpreted as 
the total number of times that one or more values 
of f have appeared in a Au window between Up and 
U.+ 1 in the realization corresponding to f3. Because 
of our assumption that the values assumed by 
f(x, (3) for fixed x and (3 are denumerable and have 
no limit points, as //Aukll ~ 0 the integrand will 
go to the total number of values of f(x, (3) between 
Up = U 1 , u. = U2 (say). We have simply 

[' p/(u, x) du = Eln(x)l:~ (say), 
u, 

(11) 

the expected (ensemble average) number of values 
(or valuedness) of the function at x between Ul 

and U2. 
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When U l = - co and U2 = + co, (11) is the 
expected valuedness of the function at x and we 
will write it 

E{n(x)}::: = E{n(x)} (12) 

when no confusion is possible. This may (and in 
many cases of interest will) be infinite, and we 
consider instead 

lim E{n(x)}:: 
"._+CD U 2 - U 1 

(13) 
V:a.-- CD 

and similar quantities. 

THE SLOPE 

We cannot build up a statistical description of the 
slope in quite such a straightforward way. This is 
because the valuedness of the slope will be at least 
as great as the valuedness of the function, and it 
is of interest to distinguish those cases in which 
the line can not cross itself, in which the valuedness 
of the slope is the same as that of the function, 
(simply being a reflection of this multiple-valued­
ness) and those cases in which the line can cross 
itself. In this latter case it seems worth while to 
define things in such a way that the multiple­
valuedness of the slope is "per value of the function", 
i.e., in such a way that the valued ness of the function 
itself is not reflected. 

It is perhaps easiest to begin by defining a two­
point joint density 

PI/(Ul' Xl; U2, X2).6.UI.6.U2 

::::: f tp(ul , .6.UI; XI' (3)tp(U2, .6.u2; X2, (3) d{3. (14) 

From what we have already done, the normalization 
properties of this density are clear, 

where 

E {n(xI) 1 I(X2) = u2 }:: 

"" n n(xl , (3) I:: tp(U2, .6.U2; X2, (3) d{3 
= n tp(u2, .6.U2; X2, (3) d{3 

(16) 

is the expected number of values of l(xI), lying 
between Ua and Ub, in those realizations in which 
l(x2) is approximately equal to U2' n(xlI (3) I:: is 
the number of values of l(xI, (3) occurring between 
Ua and Ub' 

That is to say, (15) is of the form of a conditional 
expectation multiplied by the simple density; it is 

the conditional expectation of the function "1"; a 
count of unity at each occurrence. (Note that we 
have now suppressed the ensemble index, to conform 
to customary usage). 

As an aside, by setting XI = X2 we can create 
a new type of density, the density for taking on 
two specific values simultaneously. 

Now, to obtain the simultaneous value and asso­
ciated slope, we have only to evaluate 

lim P,,(ul , XI;UI + a.6.x, XI + .6.x).6.x 
Az_O 

(17) 

which is the density for the value of I to be close 
to Ull while the associated slope is close to a. We 
must obtain the normalization properties of this 
density. 

From the relation 

X tp(Ul + a.6.x, .6.a.6.x; XI + .6.x, (3) d{3, (18) 

we can obtain, using the same techniques, the result 

= E{n(xl ) II'(xI) = a}::PI,(a, XI), (19) 

where E {n(x l ) 1 f' (Xl) = a}:: is the expected number 
of values lying between Ua and Ub having associated 
slopes approximately equal to a considering only 
those realizations in which some value has an asso­
ciated slope a. PI' (a, XI) is the density function 
for the occurrence of slope a without regard for 
the associated value. That is, if we define 

{

I if at least one value of 

"'(a, .6.a; x,(3) = I'(x, (3) E [a, a + .6.a], (20) 

o otherwise, 
then 

P,,(a, x).6.a::::: f "'(a, .6.a; X, (3) d{3. (21) 

If we had chosen to define a joint density using 

f "'(a, .6.a; X, (3)tp(u, .6.u; X, (3) d{3, (22) 

we would have gotten quite different answers, since 
we would have lost the information which associates 
a value with a slope: we would have statistics 
regarding the occurrence of a slope and a value 
without regard for whether the slope in question 
is the slope of I(x) as it takes on that value. The 
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relation between the two types of densities could 
be obtained by defining a joint density for the 
occurrence of two values and the slope associated 
with one of them. Integration with respect to one 
or the other value could then give relations between 
the two types of densities. We will not pursue this 
further here, since the density defined in (17) is 
appropriate to our purposes. 

Integrating (18) with respect to a, we obtain 

fa. P!!'(u, a; x) da 
a. 

= E{n'(x) I f(x) = u} ::P,(u, x), (23) 

where E{n'(x) I f(x) = u}:: is the expected number 
of slopes having values between a1 and a2 associated 
with the value u, given that the value u occurs 
[that is, in those realizations in which I(x) taken 
on a value approximating u]. 

REDUCTION FOR SINGLE-VALUED FUNCTIONS 

In the case of a surely single-valued function, 
it is clear that 

E{n(x)}~: = 1, 

E{n(x) I f'(x) = a}~: = 1, 

E{n'(x)}~: = 1, 

E{n'(x) I f(x) = u}~: = 1, 

E{n(x1) I f(X2) = U2}~: = 1, 

(24) 

so that all our relations reduce to the customary 
ones. 

As an aside, we might note that, for a multiple­
valued function which can not cross itself, the 
number of slopes per value is unity, i.e., 

E{n'(x) I f(x) = u}~: = 1. (25) 

GENERAL TRANSFORMATION PROPERTms 

Since we can now deal with multiple-valued 
functions as easily as (at least within the terms 
of our discussion) single-valued ones, we need no 
longer be tied to a particular coordinate system 
in defining our densities. If we can obtain the 
transformation properties of the densities, then we 
can examine the question of isotropic densities and 
similar problems. We can also obtain a check on 
our work, since the densiti~s for a surely single­
valued function, expressed in coordinates rotated 
through an angle of !11" radians from the usual, 
are the densities for a multiple-valued function, and 

(x,u) 

/ 
FIG. 2. Relations between amplitUde windows under rotation. 

should, in fact, give us the Rice formula for the 
probability of occurrence of zeros. 

Let P",(u, a; x) correspond to an x, y coordinate 
system. Let PIf,(u, &; t) correspond to an t, fj 
system, rotated through a positive angle t'J. 

Care must be taken in computing P /I', since a 
straightforward application of the usual transforma­
tion rules does not give the proper result. This is 
due to the fact that the rotating of axes causes an 
interaction between the slope of the function and 
the size of the amplitude "window". In Fig. 2, 
a simple diagram makes this clear. If a function 
appears in the U, it + II U window with slope lying 
in &, & + ll& (at constant t), then to appear in 
the u, u + llu window we must have (by the sine 
theorem) 

sin {!11" - t'J + tan-1 (a + lla)} 

llu 
= sin {!11" - tan -1 (a + lla)} . (26) 

In the limit (as "window" size becomes smaller) 
we obtain 

du = du/(cos t'J + a sin t'}). (27) 

Geometrically, it is clear that the size of the slope 
"window" does not interact with that of the ampli­
tude window, so that we have 

& = a - tant'} d& = do. 
1 + a tan t'} , (cost'J + asint'J)2 (28) 

Finally we can write (where we have introduced 
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Fig. 3. The Rice example in two coordinate systems. 

absolute value signs since only the magnitude of 
the transformation is of interest). 

Pff·(u, a; x) 

P ( . a-tan"l1 
= ff' U cos "11 - X SID "11, 1 + a tan "11 ; 

.) 1 
X x cos "11 + U SID "11 1 cos "11 + a sin "111 3 ' 

(29) 

THE RICE FORMULA 

Suppose that I(x) was surely single-valued in f, 
fj coordinates (Fig. 3). We wish to obtain P,(u, 0). 
Integrating the joint density we obtain by (23) 

1
+a> 

-a> Pff,(u, a; 0) da 

= E{n'(O) 1/(0) = uIP,(u, 0). (30) 

But the conditional expectation must equal unity, 
since the line can not cross itself. From (29), setting 
"11 = !1r, we obtain 

- ( 1) 1 Pff,(u, a; x) = Pw -x, -~; U ~3' 

Substituting in (27), we have 

1+a> - ( 1 ) 1 
P,(u,O) = -a> P w 0, -~ ; U far da, 

and making a change of variable, -1/ a = 
obtain 

1
+a> 

Piu, 0) = -a> pw(O, &; u) 1&1 d&, 

(32) 

&, we 

(33) 

which is exactly the Rice formula for the probability 
of occurrence of zeros.3 Note that we have not used 
the assumption of single-valuedness of the function 
(though we have used the assumption of single­
valuedness of the slope "per unit value"), so that 
(33) is equally valid for a multiple-valued function. 4 

The same technique can of course be used to 
obtain the well-known formula 5 for the simultaneous 
occurrence of two zeros. 

ISOTROPIC HOMOGENEOUS FUNCTIONS 

We can examine isotropic functions-that is, func­
tions for which PI!' is independent of "11. The re­
quirement for this is that (29) be valid if P If' and 
PIf ' have the same functional form. Differentiating, 
and requiring independence with respect to "11, we 
obtain a first-order partial differential equation 

ag ag 2 ag 
-Y3 aYl + Yl aY3 - (1 + Y2) aY2 - 3Y2g = 0, (34) 

where we have set 

Yl = U cos "11 - x sin "11, 

Y2 = (a - tan "11)/(1 + a tan "11), g = Pff " 

Ya = X cos "11 + u sin "11. 

(35) 

If we apply the additional requirement of homo­
geneity, so that Pff' may not be a function of x in 
any coordinate system, we find, of course, that it 
can not be a function of u either, and by solving 
the associated equations corresponding to (34) we 
obtain 

where A is a constant. If we restrict ourselves still 
further to a line that cannot cross itself, so that 
the conditional expectation in (23) is unity, then 
by integrating (36) with respect to a, we obtain 

P,(u, x) = 2A. (37) 

Furthermore, using (11), 

(38) 

That is, the expected number of occurrences per 
unit length. Finally, then, we have 

Pff,(u, a; x) = !n(1 + a 2rt. (39) 

3 S. O. Rice, Am. J. Math. 61, 409 (1939). 
4 It is not necessary to assume that the lines do not cross, 

but only that the expected number of slopes per value is 
unity, or equivalently, that, of the members taking on a 
value near u at x, only a set of measure zero has a crossing. 

6 S. O. Rice, Bell System Tech. J. 23, 282 (1944). 
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CONTOUR LENGTH OF ISOTROPIC 
HOMOGENEOUS FUNCTIONS 

This can be applied immediately to the problem 
of the expected length of line per unit area as a 
function of the expected number of cuts per unit 
length on a line cast down arbitrarily in an isotropic 
homogeneous field of noncrossing lines. 4 

The expected length of line per unit area is just 

(40) 

since PII , is independent of u and x. Using (39), 
this is just 

-1+'" -n 2 -1 nrr 
£ = - (1 + a) da = -. 

2 _'" 2 
(41) 

This is the result obtained by Corrsin1 using a 
different method. 

CONTOUR LENGTH OF ANISOTROPIC FUNCTIONS 

In Ref. 2, expressions are derived for the average 
contour length per unit length of axis for a homo­
geneous function, in both the single- and multiple­
valued case. A way is presented of relating the 
results in the two cases. We present here another 
method of making this relation. The notation is 
that of Ref. 2. 

Consider a multiple-valued homogeneous function 
of x, f(x). If a line is passed through the x axis 
at x*, making an angle 'Y with the positive side, 
the intersections of f(x) with the line will be the 
zeros of the function 

f(x) - tan 'Y(x - x*). (42) 

Applying (33), the expected number of cuts made 
by this line is given by 

M~ = i:'" dx i:'" lal da 

X P!!'(tan 'Y(X - x*), a + tan 'Y), (43) 

since P",(u, a; x) = P'f'(U, a) by assumption. 
Carrying out the x integration first, we obtain 

1
+00 1 

M~ = lal da-It -
I -00 an 'Y 

X E(n If' = a + tan 'Y}P,,(a + tan 'Y), (44) 

using (19). The average contour length per unit 
length of axis has been related to (44) by an integral 
over 'Y;2 but the exact form of this integral need 
not concern us here. If the integration over 'Y is 
carried out first, we obtain 

L = i:'" daP,,(a)E{n If' = al(l + a')i. (45) 

In the case of a surely single-valued function 
E (n I l' = a} = 1, the density P" (a) is the usual 
one, and we have just 

(46) 

Note that expression (45) could have been written 
down by inspection on the basis of the ideas pre­
sented above. 
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A redundant, linear representation of four-component spinors ",(x) by antisymmetric tensors 
f~.(x) is proposed on the basis of the relation", = if~.'Y~"V, where 'Y~' is the skew product of gamma ma­
trices and v is a constant fiducial spinor. The redundant degrees of freedom in f~. as well as the par­
ticular choice of v are both treated as unobservable "gauges," and the appropriate gauge groups are 
discussed. As part of this analysis, we demonstrate that the possibility that tensors can behave as 
spinors is intimately connected with the existence of two coordinate-invariant, gauge-covariant 
subsidiary conditions. A linear, tensorial reformulation of the Dirac equation is given, and shown 
to be the Euler-Lagrange equation of the conventional action functional for spinor fields. Finally 
covariance under arbitrary space-dependent coordinate and gauge transformations is discussed, 
and a generally covariant, tensorial form of the; Dirac equation is proposed differing from the con­
ventional generally covariant equation in the degree of arbitrariness in the (spin) connection. 

I. INTRODUCTION 

INTEREST in tensorial descriptions of two- and 
four-component spinors and their equations of 

motion has existed almost since their inception1
-

a 

and persists to the present time.4 In the usual 
approach, tensors are set in correspondence with 
a spin matrix, a two-index spinor, as opposed to 
a column spinor with but one index. 6 For this 
reason tensor equations equivalent to the Dirac 
equation lose the important property of linearity, 
at least explicitly. a It is our purpose to present a 
linear correspondence between single-index, four­
component spinors and antisymmetric tensors, and 
discuss some of its consequences. 

A. Core of the Linear Representation of 
Spinors by Antisymmetric Tensors 

The core of our linear correspondence is based 
on the following observations: Let 'Y~ be four Dirac 
matrices· that satisfy 

'Y"'Y. + 'Y. 'Y" = 2g~·, 

1 E. T. Whittaker, Proc. Roy. Soc. (London) A158, 38 
(1937). 

I A. H. Taub, Ann. Math. 40, 937 (1939). 
aT. Talcabayasi, Progr. Theoret. Phys. (Kyoto) 13, 222 

(1955); Phye. Rev. 102,297 (1956). 
4 Important issues involved in the relationship between 

tensors and spinore are put in particularly sharp focus by 
J. A. Wheeler, Ge()1l'U!trodynamics (Academic Press Inc., New 
York, 1962), pp. 88-94. 

• An excellent account of the conventional formalism is 
given by E. M. Corson, Introduction to Tensors, Spinors, and 
Relativistic Wave Equations (Hafner Publishing Company, 
Inc., New York, 1953), Chap. II. 

e We follow the notation of J. M. Jauch and F. Rohrlich, 
Theory of Photons and Electrons (Addison-Wesley Publishing 
Company, Inc., Reading, Massachusetts, 1955). In particular, 
we adopt g11 = g22 = gn = - goo = 1; E0l23 = 1; 'Y6 = 'YO'Y1'Y2'Y3. 
Additional relevant properties of the Dirac gamma matrices 
are given in AppendIX A2 of the cited reference. 

and define 'Y~' by 

'Y". == l('Y"'Y· - 'Y''Y''). 

Let v denote an arbitrary nonzero spinor--which 
we call the fiducial spinor-for which 'Y5V ;¢ ±iv. 
Then the six spinors 'Y~'v always span spin space, 
and thus form a redundant "basis" for spin space. 
The expansion coefficients of an arbitrary spinor 
field 1/I(x) in this "basis" are complex, antisymmetric 
tensor fields: 

(1) 

The tensorial transformation properties of f~.(x) 
under Lorentz transformations are dictated by (1) 
and the requirement that both 1/I(x) and v are 
spinors. 7 

B. Survey of Principal Topics 

Equation (1) provides a linear map f". -+ 1/1 of 
antisymmetric tensors onto spinors, but because 
of the different dimensionality of these spaces this 
is necessarily a many-one mapping. Consequently, 
one of our initial tasks in Sec. II is to determine the 

7 An immediate algebraic consequence of (1) is 

'Y51/1(X) = -l/I'.(xhl"v, 
where 

'~.(x) == lEl'mr'(X) 
is the dual of f 1'" A 'Y. invariance of "'( 'Y'''' = ±i",) is secured 
if I~. is chosen self-dual (J 1" = "f' if~.). However, if 'YoV = ±iv, 
the six spinors 'Y~·v do not span spin space since all '" of the 
form (1) will satisfY'Y6'" = ±i", independent of whether 11" 
is self-dual or not. We exclude this possibility by assuming 
'Y.v r" ±iv. 

1204 
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set of i 1" that map onto the same 1/1.8 For physical 
applications, we regard the difference between two 
antisymmetric tensors il'" which have the same 
image 1/1, as an unobservable "gauge." As a con­
sequence, our linear tensorial reformulation of the 
Dirac equation [Sec. II. I, Eq. (41)] is expressed 
in terms of redundant variables two of which cor­
respond to gaugelike degrees of freedom. Of course, 
a redundant tensorial formulation is in no way 
incorrect, and indeed analogous redundant formula­
tions with gauges permeate mathematical physics: 
e.g., the electromagnetic field, meson fields with 
nonzero integral spin, the gravitational field, etc. 

A gaugelike property of a different nature, also 
discussed in Sec. II, arises from the arbitrary choice 
of the fiducial spinor v. If we adopt a different v, 
then Eq. (1) provides a different map il'P --+ 1/1. 
An analysis of this gauge demonstrates that the 
tensors il'> that correspond to spinors undergo a 
gauge transformation isomorphic to an independent, 
spin-! representation of the complex Lorentz group. 
The properties of this gauge group shed light on 
how tensors can behave as spinors, and show how 
tensors with the properties of spinors could have 
been introduced ab initio. 

In Sec. III, we extend the linear tensorial rep­
resentation of Eq. (1) to a general relativistic setting 
in which the gamma matrices and fiducial spinor 
become space dependent. General covariance re­
quires the introduction of an affine connection­
additional to the Christoffel connection-which is 
an analog of the well-known spin-affine connection. 9 

The "geometrical" relation determining our affine 
connection differs from the usual one,9 and leads 
to an affine with not just one, but ten arbitrary 
vector fields. As a consequence, our generally 
covariant linear tensorial formulation of the Dirac 
equation is capable of exhibiting Yukawa-like inter­
actions with a number of independent vector fields. 

The results which are developed in the following 
sections should demonstrate that a linear tensorial 
reformulation of any spinor relation may be readily 
obtained. It is ultimately hoped that a linear rep-

8 A description of spinors by redundant variables alternll!­
tive to our Eq. (1) has been discussed by V. Hlavaty, Geom­
etry oj Einstein's Unified Field Theory (P. Noordhoff, Ltd., 
Groningen, The Netherlands, 1957), Appendix 2. We thank 
Professor Hlavaty for drawing this work to our attention. 

8 For general covariance under coordinate transformations, 
see any standard text covering general relativity, e.g., L, 
Landau and E. Lifshitz, The Classical Theory oj Fields, trans­
lated by M. Hamermesh (Addison-Wesley Publishing Com­
pany, Inc., Reading, Massachusetts, 1951), Chap. 10. For 
general covariance under spinor similarity transformations 
see, e.g., W. L. Bade and H. Jehle, Rev. Mod. Phys. 25, 714 
(1953); D. R. Brill and J. A. Wheeler, ibid. 29, 465 (1957). 

resentation of spinors by tensors, for which we have 
an unquestionably greater intuitive feeling, may 
yield a deeper insight into the significance and 
meaning of spin and spinor fields in nature. 

II. ALGEBRAIC AND GAUGE PROPERTmS OF THE 
REDUNDANT TENSORIAL FORMULATION. 

REPRESENTATION OF THE SPECIAL RELATMSTIC 
DIRAC EQUATION 

A. Fiducial Tensors Based on the Fiducial Spinor, 
and their Algebraic Identities 

With the help of the spinor v and its "transpose­
conjugate" 1) ~ v -B'Y 5,10 only two complex tensors 
arise, which are 

cl' ~ i1>"(l'v, (2) 

(3) 

all other covariants vanishing identically. Along 
with cl" we introduce its dualll 

which is independent of cu' since 'Y"V ;>6 ±iv. These 
three tensors are fundamental for our purposes, and 
we shall hereafter refer to them as the fiducial tensors. 

The fiducial tensors satisfy a number of algebraic 
relationsl2 all of which are consequences of the basic 
identity 

In particular, the spinor relations 

and 

a a fJ fJa "a fJ 
C V = c fJ'Y v = CfJ'Y V = li fJ'Ys'Y V 

hold. From these, follow the tensor relations 

and 

Cl'~ = 0, 

CI"c' = ~I"c' = 0, 

Cl',c'
A = ~l',C'A = -CI'C

A
, 

(4a) 

(4b) 

(5) 

(6a) 

(6b) 

(7) 

(8a) 

(8b) 

10 J. M. Jauch and F. Rohrlich, Theory oj Photons and 
Electrons (Addison-Wesley Publishing Company, Inc., Read­
ing, Massachusetts, 1955). 

11 We denote the dual tensor by a tilde reserving the more 
conventional asterisk to denote the complex conjugate. 

11 Properties of biquadratic spinor identities have been 
frequently discussed. See, e.g., K. M. Case, Phys. Rev. 97, 
810 (1955). 
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It may be noted that Eq. (4a) implies that the four 
spinors "/,v never span spin space. 

The fiducial tensors are a complete replacement 
for the gamma matrices. Indeed, it suffices to begin 
with an antisymmetric tensor c~. both of whose 
invariants vanish as in (6b). These conditions imply 
the remaining algebraic constraints and determine 
c" up to an over-all sign from (8a). 

We shall have use of the following consequence 
of (5): Let b" be any four vector for which b"c" -,= o. 
It then follows that 

(9) 
Eli" == (clib" - c"bli)/(b"c"). 

Thus Eli" is a tensor whose image spinor coincides 
with the fiducial spinor. 

B. Additive c-Gauge in the Mapping of 
Antisymmetric Tensors onto Spinors 

which follow from the transpose adjoint of Eq. (4b). 
Equation (12) provides a tensorial expression of any 
spinor quantity, and Eq. (13) ensures that the 
tensorial expression y~' has the proper number of 
degrees of freedom. 

Tensors of the type y'" may be said to be "con­
tragredient" to those of the type I",. This IS a 
consequence of the identity 

(14) 

which suggests that the tensors y!" lie in a space 
ID dual (as a linear vector space) to the space B' 
of tensors of the type I~ .. It is relation (13) that 
immunizes each y!" against the effect of any c-gauge 
transformation of f}JY" 

Further insight into these two types of tensors 
may be won if we put tp = ie"Ii'Y"fiv, e"li E B', in the 
manner of (1). Insertion of this relation into (12) 
leads to 

The nature of the many-one linear mapping of 
antisymmetric tensors onto spinors is illuminated where 
by Eq. (4b). This relation demonstrates that every 

(15) 

tensor of the form (16) 

(10) which is expressed with help of the conventit'ln 

with a(x) and b(x) arbitrary is mapped by (1) into 
the same spinor 1/;(x). Equation (10) displays the 
additive "gauge" freedom of Eq. (1), which we 
shall call a c-gauge. Specifically we assert that (1) 
is invariant under a c-gauge transformation of I~. 

defined by 

I". ~ I~/ = I". + ac". + bc"," (11) 

These transformations clearly form an Abelian gauge 
group. 

In particular, the various tensors E". that satisfy 
(9) differ from one another by c-gauges. 

C. The Inverse Map of Spinors onto Antisymmetric 
Tensors; Contragredient Tensors, 

and the Effective Metric 

In analogy with (1) we can define a linear map 
of spinors tp(x) onto antisymmetric tensors y~'(x), 
tp ~ y"', according to 

y"'(x) == ifh"·tp(x). (12) 

The tensors defined by (12) differ from the f'" type 
in several respects: Firstly, they are c-gauge in­
variants, and secondly, they fulfill 

c".y'" = 0, 

c",y'" = 0, 

(I3a) 

(13b) 

A ["Blil == A"BIi _ AfiB". 

Equation (15) gives a linear mapping of B' onto ID 
with the help of the tensor M", "Ii. Furthermore, 

!f".y'" = t/",M"'''lieali = i~tp, (17) 

which enables us to interpret M~'''fi = _M"Ii'" 
as a kind of metric to form invariants from pairs 
of tensors in B', exactly in the sense that B'Ys IS a 
metric to form invariants from pairs of spinors. 

D. The F-Gauge Arising From Changes 
of the Fiducial Spinor 

It is clear from (1) and (12) that the particular 
map I Po' ~ 1/; and the particular map cp ~ yi" depend 
very strongly on the particular choice made for v. 
Different fiducial spinors lead to different corre­
spondences. But a change of v and not of the gamma 
matrices is completely analogous to a change of 
representation of the gamma matrices without a 
corresponding change of v. Since no particular choice 
for a representation of the gamma matrices has any 
physical significance, it follows that any specific 
choice that is made for 'Yi' must be treated as an 
unobservable "gauge." This result suggests that 
the choice of the fiducial spinor v likewise corresponds 
to a choice of an unobservable gauge--Iet us say, 
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the F-gauge-and we now proceed to investigate 
this F -gauge freedom. 

Under an F-gauge transformation, 

(18a) 

where Vp denotes a new fiducial spinor (for which we 
require 'YsVp ~ ±ivF)' An associated F-gauge trans­
formation of f ~" 

f~, ~ f~/, (18b) 

enables us to map f~/ ~ t/t according to 
.to - if F~. - if ~. 
'I' - 2" ~. 'Y VF - 2" ~,'Y v. (19) 

Equation (19) is the fundamental condition that 
relates (18b) with the basic transformation (18a). 

It is noteworthy that linearity of the basic map­
ping is preserved under an F-gauge; for if fM ~ 1/; 
and f'~, ~ 1/;', then f~/ + f'~/ and (f~. + f'~,)F 
are mapped onto the same spinor and may be 
identified. (We ignore the simple c-gauge trans­
formations here.) 

The F-gauge transformation v ~ Vp induces a 
transformation in y~', Eq. (12), according to 

(20) 

As above, linearity of the map cp ~ y~' is preserved 
under an F-gauge change. 

Since the right side of (14) is composed of F-gauge 
invariant quantities, we find the important F-gauge 
invariant 

(21) 

This equation implies that f~. and yl'V undergo 
contragradient F-gauge transformations. 

Finally, we consider the F-gauge transformation 
of the fiducial tensors for which 

while we set 

(22a) 

(22b) 

(23) 

The distinction between (20) and (22b) should be 
carefully noted: the former involves a change of 
one spinor, while the latter involves a change of 
both spinors, a distinction for which the parentheses 
about F serve as a reminder. Equations (22) and 
(23) clearly define new fiducial tensors that fulfill 
algebraic conditions similar to those in Eqs. (4)-(8). 

E. Spin Nature of the F-Gauge Group 

The F-gauge transformations introduced above 
can clearly be regarded as a group of transformations 
with the various quantities, i.e., v, f~" y~', c~', c~ 

transforming under different representations. To 

study this group it suffices to study the basic group 
of transformations v ~ VF, for this will determine 
the form of the remaining transformations. 

We explicitly define the transformation of v with 
the help of a 4 X 4 matrix T, 

VF = Tv. (24) 

It is actually possible to choose an eight (real) 
parameter family of transformations {T} to describe 
(24), since every spinor is determined by eight 
real numbers. For example, T may be labeled by 
the image fiducial spinor obtained after the trans­
formation of a specific fiducial spinor. However, 
the formulation is simplified considerably by con­
sidering a group with additional parameters, all but 
eight of which are redundant. 

In order to ensure 'Y5VF ~ ±ivF whenever 
'Y5V ~ ±iv, we choose a group of nonsingular trans­
formations {T} all of which commute with 'Y5' The 
desired commutation is secured if the infinitesimal 
elements of these transformations commute with 'Y5, 

which requires them to be linear sums of the eight 
matrices 1, 'Y~" and 'Y5. To form such a group of 
transformations sufficiently large to carry any spinor 
into any other spinor, we must necessarily include 
as infinitesimal elements all the 'Y~,. Since 1 and 'Y5 
would lead to an Abelian factor group with further 
redundant parameters, we include only the six 'Y p' 

as infinitesimal elements. And to obtain at least 
eight real parameters for {T}, we use six complex 
parameters for these infinitesimal elements. 

The resultant family of transformations has a 
well-known form, and dictates our choice of the 
basic F-gauge group as the spinor group S of complex 
Lorentz transformations. A typical element, T, of 
this group has the form 

T = exp (hp,'YP
'), (25) 

where €". is a complex, antisymmetric tensor. This 
group, indeed, has redundant parameters for our 
purposes as is made clear from the example 

exp [Hacp • + bCI',h~']v = v. 

Nevertheless, S is a convenient choice to define the 
F-gauge group of transformations. 

F. Detailed Nature of Various F-Gauge 
Transformations 

Homomorphic F-Gauge Transformations 
of the Fiducial Tensors 

Since T has a form corresponding to a Lorentz 
transformation, it follows 1o that fJF = fJT-\ and thus 
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that 

e"(p) = ifJT-1'lTv = L''' aeu, (26a) 

where L'" a are elements of the appropriate complex 
Lorentz transformation for vectors. In similar 
fashion, it follows that 

". L" L' afJ e (1") = IX pC • (26b) 

These relations imply that e'" and e'" transform in 
the manner of an independent, complex Lorentz 
transformation under an F-gauge transformation. 

As a canonical example of such a transformation, 
consider the case E12 = 8, 8 complex, with all other in­
dependent E", vanishing. This example corresponds to 
a (complex) rotation about the z axis, and (26b) 
becomes 

e12 
(1") = e12

, (27 a) 

cUm = cos (8)e13 + sin (8)e23 , (27b) 

C23
(p) = -sin (8)c18 + cos (8)c2a, (27c) 

together with the corresponding dual equations. 
Since b", which enters the definition of E'" in (9), 

need only fulfill b"e" ~ 0, it follows that we can, 
if we choose, adopt a new b'" in each gauge, b" (1") = 
L".b', such that bile" actually remains an arbitrary, 
nonzero F-gauge invariant. In that case, E'" trans­
forms as in (26b), 

Ell' - LI' L' pafJ 
(I") - a {J£J , (28) 

i.e., under an independent but ordinary complex 
Lorentz transformation. 

Isomorphic F-Gauge Transformations 

The transformation of YP' reads y,l> 1" = ifJ exp 
(- iEafJ'YafJ)-yIl' \/'. To obtain a feel for this trans­
formation let us first consider the canonical example 
of (27), where E12 = 8, all other independent E". 

vanishing. It follows immediately, for example, that 

y12p = ifJ[cos (!8)')'12 + sin (!8)]\/" 

y13 p = if) exp (_i8')'12)')'13 exp (1-8')'12)\/" 

y23 p = if) exp (_i8'Y12)')'23 exp (i8')'12)\/" 

together with the corresponding dual equations. 
The latter two equations again have the form of 
an ordinary rotation-but now by a (complex) angle 
of t8. If we employ the tensor E p ., we can express 
these transformations as 

y!2p = cos (t8)y12 - sin (t8)(!Ep ,YI"), (29a) 

y13 p = cos (!8)y13 + sin ct8)y23 , (29b) 

y2S,. = -sin (!8)ylS + cos (i8)y23, (29c) 

together with their corresponding duals; specifically, 
the dual of the relation (29a) becomes 

y30 p = cos (!8)y30 - sin (i8)(!1!J",yl"). (30) 

Clearly yla and y23 transform as under a Lorentz 
transformation with the parameter t8. 

Let us further specialize our example to gain 
insight into the form of y12p and ySOp in this F-gauge 
transformation. We choose our fiducial tensors such 
that C12 = elO = 1, and c2 = CO = 1, all other in­
dependent components vanishing. For this example, 
E20 = 1, all other independent components vanish­
ing. Thus, Eqs. (29a) and (30) become 

ylll F = cos (lO)y12 - sin (to)y20 , (31a) 

y30 F = -sin (!0)y13 + cos (!8)y30. (31b) 

For our choice of e"', the constraints of (13) read 
y12 = ylO and y30 = _~a. In the new gauge, Eq. (27) 
and its dual indicate that c111

(P) = 1, c10
(P) = cos 0, 

and c20
(p) = -sin 8, all other independent terms 

vanishing. These relations in (13) generate the con-
• 12 10' 8 20 30 stramts Y 1" = cos 8 y 1" -sm Y FY F = 

-cos 8 y23 F - sin 8 yl3 p in the new F-gauge. When 
these two sets of constraints are inserted into (31), 
the resultant equations are seen to be consequences of 
(29b) and (29c) and their duals. In short, the curious 
transformations (31) are already contained in and 
implied by the simple half-angle rotations (29b) and 
(29c) and their duals. Thus the consistency and 
significance of (29a) and (30) are established. 

We may extend the above example to a form 
appropriate to a general Ell' only one of whose 
independent terms is nonvanishing. Let 8 be the 
value of the single term in E"., and write E", = 8r#,. 
We define ~ = (lr#,r"')i, i.e., ~ = 1 for an ordinary 
rotation, while ~ = i for a pure Lorentz rotation. 
Then 

y#' If = L'" ,,(l~e)L'fJ(!~8)y"fJ 

+ Hcos (!~e) - l]W'rafJy
afJ - fP'f"fJya~) 

- ! ~-l sin (l~8)(r"'EafJyafJ - f"'EafJy"fJ) , (32) 

where L Il" (t~ 8) denotes the appropriate Lorentz 
transformation with the haH-angle parameter, !~ 8, 
explicitly stated. 

The collection of F-gauge transformations deter­
mined by (32) constitute a generating set for all 
F-gauge transformations, and they imply that the 
tensors y'" undergo an F-gauge transformation iso­
morphic to an independent, spin-t representation 
of the complex Lorentz group. The double-valued 
property characteristic of this representation is al-
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ready contained in the canonical example presented 
above. To display this property, it suffices to set 
8 = 211"; it follows from (29) that y,JP l' = _y,JP, 
while (27) leads to cP

' (p) = cpv
• 

The F-gauge transformation of Ip, is contragredient 
to that of yPV, and we first indicate its form for the 
canonical example discussed above. The result of 
our imposing the identity (21) and adopting a 
specific c-gauge leads to 

11/ = cos (!(J)f12' (33a) 

11/ = cos (!(J)/13 + sin (!(J)/23 + sin (!8) cos (8)130. 
(33b) 

123 F = -sin (!8)/13 + cos (!8)f23 - sin (!(J) sin (8)/30. 
(33c) 

together with the corresponding dual equations. 
For an arbitrary Ep. = 8r pp only one of whose 

independent components is nonvanishing and has 
magnitude 8, the generalization of (33) reads 

/",1' = LPa(-!~(J)LPIl(-!~(JWIl 

+ ![cos (!~8) - IW-P's allrll - fP'f allrll) 

+ !~-I(P2 + P2)-! sin (!~(J)[EP' (p)(Pr allrll 

+ P f allrll) + EP
' (p) (p r allrll - P f april)], (34) 

where 

The set of transformations (34) form a generating 
set, and imply that r undergoes an F-gauge trans­
formation isomorphic to an independent, complex, 
spin-! Lorentz transformation. The double-valued 
property is exemplified by (33) when we set 8 = 211", 
for then Ip.' = -Iw 

In order to examine the e-gauge freedom in con­
nection with the F-gauge transformation (34), we 
turn our attention to a property of the combined 
F- and c-gauge groups. 

G. Connection Between Different F-Gauge 
Transformations of eP

' 

In a fixed F-gauge, the tensor cPP may be regarded 
in three different ways: (i) as the fiducial tensor; 
(ii) as a member of ID, since it fulfills the condition 
(13); or (iii) as a member of ff, the space dual 
to ID. Whichever interpretation is chosen for eP

' 

dictates its F-gauge transformation properties; and 
after an F-gauge transformation, these three tensors 
will no longer enjoy the numerical equality they 
possessed initially in view of their differing laws 
of transformation. We now wish to establish that 

(35) 

namely, that the transform of the fiducial tensor 
Cp • is a linear combination of the transform of Cp , 

and c", viewed as members of ff. Here, A and B 
denote gauge-variant, Lorentz scalars. 

We prove (35) most simply by assuming it to 
be false and showing contradiction. We assume that 
the right side of (35) is augmented by a term CK", F, 

linearly independent from c,,/ and cp /, and contract 
the modified relation with an arbitrary y"V p. If 
follows that 

= (Ac pp + Bcp , + CK",)yP' = 0, 

the last result following from (13), which in turn 
depends on (4b) with v replaced by VI" Since the 
coefficients of A and B are zero by assumption, 
we find that 

(36) 

for all y"P E ID. We need only investigate four 
linearly independent K"', and it can be shown 
without difficulty that E"', defined by Eq. (9), 
E"', J"', and ]pv form such a quartet, where J'" == 
b(IIC,l aba. When K"p = E"" we find a violation 
of (36) for YP' = E llv E ID since !E",EP

' = -1, 
unless C = 0. When Kp. = E", a counter example 
is YP' = Ep, E ID, unless C = 0. For Kp. = JP' 
we find a counter example in y", = Cp • E ID, since 
V"VCp • = (c"bP

)
2 t= 0, unless C = 0. Finally, for 

Kp. = ]pp, ypp = cp• E ID provides a counter example, 
unless C = O. Thus no extra term can be consistently 
added to Eq. (35), and elementary examples show 
the necessity of both terms. The validity of (35) 
is therefore established. 

Equation (35) sheds light on aspects of the c-gauge 
freedom of (34) associated with the nonuniqueness 
of E,,,, remarked on in Sec. II C. A different choice 
for E p • CF ) augments Eq. (34) by terms proportional 
to CpvCF) and Cp.CF)' However, according to (35), 
these additional terms may, in turn, be expressed 
in terms of cp / and cp .', and thus they correspond 
to a harmless, unobservable c-gauge transformation 
of Ip/. 

We further note that Eq. (35) implies that the 
subspace, which is the image under an F -gauge 
transformation of the subspace 

([ == {acp• + bcp ,: a, b arbitrary complex numbers} 

is the same whether Cp • (and hence cp ,) transform 
as members of ff, or whether they transform as 
fiducial tensors. In an obvious notation we can 
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state this result as ~(F) = ~F. This observation 
is important in our answer to the question: 

H. How Can Tensors Behave as Spinors? 

Weare now in a position to gain additional 
insight into how, beginning only with tensorial quanti­
ties, it would be possible to introduce tensors that 
behave as spinors. Consider the collection ~ of com­
plex second-rank, skew-symmetric tensors, and 
single out of this family a fiducial tensor c". and 
its dual c". (~ ±ic".), both of whose invariants 
vanish. We next use these tensors in order to define 
a subspace ID C ~ as follows: Let ID consist of all 
those tensors y'" E .~ that fulfill the two relations 

c",y'" = o. 
(37a) 

(37b) 

We now imagine that ID formed the domain of 
tensors for some physical problem which itself in 
no way singles out any special antisymmetric 
tensors. If this is to be true, however, the particular 
tensors c". and c". we started with can not have 
any intrinsic physical significance, and the choice 
of these tensors must correspond to an arbitrary, 
unobservable gauge of the physical theory. We can 
pass to any other pair of acceptable fiducial tensors, 
C".(F) and C,,'(F), by means of an independent, com­
plex Lorentz transformation, as indicated in Eq. 
(26b). 

We might be tempted to define the transform 
of y'" by a contragredient (spin-I) complex Lorentz 
transformation. That would, in fact, be the only 
possiblity if we had imposed condition (37a) or 
(37b) alone. However, with the two conditions (37) 
an alternate choice exists for the transformation of 
y"'; we could adopt a transformation for y'" -call 
it y'" F-such that the vanishing of each of the 
equations 

ClLv(F)Y~V F = 0, (38a) 

(38b) 

is a consequence of both Eqs. (37a) and (37b). In 
particular, if we employ (35), the validity of (38a) 
stems from 

(Ac", + Bc".)y'" = 0, 

which depends on both (37a) and (37b). 
We may state these two transformation choices 

as follows: The tensors y'" E ID are each orthogonal 
to the subspace <£. The elements of the transformed 

ID space must likewise be orthogonal to the trans­
formed subspace ~. But since ~(F) = ~F, we can 
transform ID contragrediently to either of these 
choice for <£ and still achieve the desired orthog­
onality in the new gauge; and it is those tensors 
which transform as y'" F under the independent 
Lorentz transformation of c,,' that behave as spinors. 
The existence of such tensors is made possible by 
the existence of two Lorentz-invariant subsidiary 
conditions (37), and arises when we regard these 
conditions as gauge-covariant (rather than gauge­
invariant) under an independent, complex Lorentz 
transformation of the fiducial tensors. 

To complete the present heuristic deduction of 
tensors which behave as spinors we need only 
introduce the space ~ of tensors i ". as the space 
dual to the space ID. In so doing, we see that the 
c-gauge arises in a natural fashion. 13 That the 
tensors i", likewise behave as spinors is ensured by 
our imposing on i". a transformation contragredient 
to y'" under an F-gauge transformation. 

I. Redundant Tensorial Representation 
of the Dirac Equation 

To convert the special relativistic Dirac spinor 
equation 

(39) 

into a tensor equation, it suffices to carry out two 
operations: First, re-express !/I(x) in terms of i".(x) 
according to (1), and second, multiply Eq. (39) on 
the left by iVy~T' so as to express (39) itself in terms 
of the elementary "vectors" of the redundant basis. 
Since "(" and v are independent of space, Eq. (39) 
becomes 

!i(Vyu/y""("'v)i""" + !mi(hUTy'V)t", = 0, (40) 

where the comma denotes ordinary partial deriva­
tive. If the products of gamma matrices are expanded 
in terms of the 16 basic matrices,1O the two co­
efficients in (40) may be expressed in terms of c", c"', 
and the metric; indeed, the coefficient of m has 
already been encountered in Eq. (16). It follows 
that Eq. (40) becomes 

c"(t~"'T + t"T'~ + iTU,,,) + c~f"T.I' - CTr~,I' 

+ m(c/iTI' - c/tu,,) = 0, (41) 

which is our redundant tensorial representation of 
13 The origin of the c-gauge discussed here may be com­

pared with a related origin of the electromagnetic gauge in 
a standard introduction of the four-vector potential A" as 
a linear functional on currents defined by f i"A" !lx, wherein 
i" satisfies iI',,, = O. 
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the Dirac equation. 14 The first three terms of (41) 
may also be collected into the expression E~~TflC~ jfla, a. 

Equation (41) is invariant under c-gauge trans­
formations, and transforms covariantly as a member 
of ID under F-gauge transformations. These proper­
ties are self-evident from the form (40) to which 
it is algebraically identical. 

Massless Dirac Equation and Duality 
Rotations 

If m = 0 and we employ the indicated alternate 
expression for the first three terms in (41), our 
tensorial form for the Dirac equation reads 

(42) 

The dual to this equation implies that J~, is also a 
solution whenever f~. is one. Linearity of the dif­
ferential equation then leads to the result that the 
"duality rotated" tensor 

(43) 

is a solution of (42) for all constant {3 if only f~. is 
a solution. This is simply our expression of the 'Ys 

invariance of the massless Dirac equation. 
It is interesting to compare the solution degeneracy 

given in (43) with a well-known solution degeneracy 
for the source-free electromagnetic field F~ •. Speci­
fically, Maxwell's source free equations admit a 
family of "duality rotated" solutions, 

(e-a)F~. == cos (a)F~, + sin (a)F~., (44) 

for all constant a, provided only that F~. IS a 
solution. 

Our results in Eq. (43) may have bearing on a 
question raised by Wheeler,10 whether there may 
exist a possible connection between 'Yo duality 
rotations for the massless Dirac equation and the 
duality rotations (44) for Maxwell's equations. The 
identity in form shared by (43) and (44) suggests 
that there is basically only one type of duality 
rotation, which, although we customarily view from 
different algebraic standpoints, can be made identical 
in form with the aid of the redundant tensorial 
formalism. 16 

,. The redundant tensorial representation may be ex­
tended most directly to higher spin fields and their associ­
ated first-order equations by using the formalism of V. 
Bargmann and E. Wigner, Proc. Nat. Acad. Sci. U. S. 34, 
211 (1948). 

16 Reference 4, p. 91. 
18 It goes without mentioning that the similarity in form 

of degenerate solutions carries no implication of any similarity 
of the corresponding fields, e.g., between the neutrino and 
electromagnetic fields. 

J. Charge-Conjugate and Adjoint Tensors; 
Real Fiducial Tensors 

Although we have confined our attention to 
spinors and tensors formed purely algebraically, 
physical applications require that we consider com­
plex-conjugate quantities as well. For example, the 
charge-conjugate spinorlo 

if/ex) = !f~.(xh"·v', 

v' == C*v*, can be expressed as 

y/(x) = !f~.(xh"·v 

in terms of the "charge-conjugate tensor" 

f;.(x) == !f~fl(X)C"fl"" 

where the tensor C"fl~. satisfies 

(45a) 

(45b) 

(46) 

(47) 

Similarly, the Pauli adjoint of the spinor if;(X),lO 

i[;(x) = -!t:,(x)iYy"', (48a) 

v == v + A, can be expressed as 

(48b) 

where f~, is given by (46). 
It is to be observed that t:. in (45b) and (48b) 

undergoes F-gauge transformations as a member of 
~, while f:, in (45a) and (48a) transforms as a 
member of ~*, i.e., according to the complex 
conjugate of (34). 

Particularly noteworthy in the present connection 
are the special cases when the fiducial spinor v is 
self-charge-conjugate, v = v', which lead to tensorial 
representations that are analogs of the Majorana 
representations of the gamma matrices. For self­
charge-conjugate v, (47) is satisfied by cali", = 

o"f3", == o"r"of3'1l and therefore 

f~,(x) = f:.(x) , if v = v'. (49) 

In addition to this simplification, the fiducial tensors 
d", c"' and c" all become real tensors when v = v', 
[which, of course, must also satisfy the algebraic 
constraints, Eqs. (4)-(8)]. The F-gauge freedom 
that remains among self-charge-conjugate fiducial 
spinors corresponds to independent, spin-! Lorentz 
transformations with real parameters E",. 

Although self-charge-conjugate fiducial spinors 
constitute a subset of all possible fiducial spinors, 
they nevertheless form an important subset because 
of the simple relation between complex conjugates 
and charge conjugates (just as in a Majorana rep­
resentation) and between complex conjugates and 
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Pauli adjoints ill the redundant tensorial rep­
resentation. 17 

K. Ordinary Action Functional Applies to the 
Redundant Tensorial Representation of the 

Dirac Equation 

The tensorial equation (41) can be derived as 
the Euler-Lagrange equation of the usual action 
functional 10 

(50) 

where AapB == A(opB) - (opA)B. We first insert 
into (50) the expressions for If; and if! in Eqs. (48b) 
and (1), respectively. Straightforward algebraic 
manipulation leads to the form 

I = -ii J [fc/cPa",!." + f"/c"a",f. '" 

+ 2mf"/c/f."] dx, (51) 

in which the invariance of the first two terms under 
a duality rotation ('Y3 rotation) is clear. If we now 
make a variation of I-not with respect to 1f;-but 
with respect to f"~T, then the resultant Euler­
Lagrange equation is (41), as desired. Since the 
action Eq. (50) and thus Eq. (51) is invariant under 
both c- and F-gauge transformations, this leads, in 
the usual fashion, to equations of motion that 
undergo covariant gauge transformation, as we have 
already noted. A variety of other quantities can be 
deduced from the action, such as the stress energy 
tensor, the current, etc. All of these are simple 
translations of well-known spinor forms to a re­
dundant tensorial form, as was the action functional 
itself. 

L. Fermi Nature of Quantum Theory 

Although our principal concern here is directed 
toward c-number spinors, a few remarks may be 
in order regarding the quantum theory lest the 
reader take our tensorial description to imply that 
Bose quantization is required. This is, of course, 
not the case, and the present formalism is completely 
consistent with Fermi quantization with a positive­
definite Hilbert-space metric. 

For x-y spacelike, the only nonvanishing anti-
17 The author thanks Professor A. H. Taub for suggesting 

the use of Lorentz-covariant fiducial tensors based on a gen­
eral spinor v rather than restricting attention to a subset 
thereof composed only of real fiducial tensors for which 
v = v·. Complex conjugation and reality properties do not 
enter the representation properties of Eq. (1) at all, and only 
arise in the discussion of charge-conjugate equations, and 
the like. 

commutator is 

(52) 

the term -If;(y)'l being the canonically conjugate 
spinor to if!(y).10 Obviously it is fp.(x) that becomes 
the quantized operator in our representation, while 
v and of course 'l' remain as in the c-number theory. 

It would at first appear natural to set the anti­
commutator 

{fA.(X), n"'p,,(y)}, 

between /A.(x) and its conjugate momentum 

n"'Pp = i(fCClPcP + f"~("'gPJ"c~ + f""("'c PJ ), 

proportional to 

(53) 

(54) 

However, the anticommutator (53) cannot rigorously 
be proportional to lh. ",P because the latter factor 
does not vanish on contraction with C"'P or ~"'P as 
does n"'llp == -1f;"/'Y"'IlV [see Eq. (4b)]. 

To overcome this difficulty we may exploit the 
c-gauge freedom in defining /A. and adopt the 
expression 

{fA.(X), n"'llp(y)} 

= -i~"(x, Y)[~A. "'p + d- 2(Cb J"'P - ~A.J"'Il)], (55) 

where J"'1l = b("'lJ~b', d == b"'ca ~ O. The term 
in square brackets in (55) vanishes on contraction 
with either C"'P or ~aP, and is an idempotent matrix 
with trace four. In any diagonal form, the factor 
in square brackets has nonnegative terms, and thus 
a representation of the quantum operators in (55) 
exists in a Hilbert space with positive-definite 
metric. This would not be the case if terms of an 
intrinsically opposite sign had occurred on the right 
side of (55).18 

It is of course not uncommon for the commutation 
relations between nonobservables to depend on gauge 
properties of the field. Such a situation occurs in 
the quantization of the four-vector potential of the 
radiation field, and the expression above provides 
yet another example of this phenomenon. 

III. GENERALLY COVARIANT GAUGE 
TRANSFORMATIONS; REPRESENTATIONS 

OF THE GENERAL RELATIVISTIC 
DIRAC EQUATION 

As soon as general coordinate transformations are 
permitted, the metric-and, as a consequence, the 
Dirac gamma matrices-become space dependent. 
There is no longer any reason to require the fiducial 

18 W. Pauli, Progr. Theoret. Phys. (Kyoto) 5, 526 (1950). 
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spinor to be constant, and the appropriate general- we obtain 
ization of (1) reads 

1/t(X) = !f~.(x}y~'(x)v(x). 

A. Algebraic and Differential Covariants; 
The F-Affine Connection 

(56) 

It is clear that an analysis parallel to the preceding 
section can be carried out in which each algebraic 
expression verified there continues to hold true at 
each point x. Such a generalization extends directly 
to space-dependent c- and F-gauge transformations 
as well. In this way all algebraic relations of Sec. II 
become generally covariant under both coordinate 
and gauge transformations. However, an appropriate 
definition must be found for generally covariant 
differential operators. For the tensorial properties, 
it suffices to use the conventional covariant deriva­
tive based on the Christoffel symbols, and which 
we denote by a semicolon. To maintain covariance 
under space-dependent F-gauge transformations re­
quires us to introduce another affine connection­
say, the F-affine-analogous to the well-known spin 
affine. 19 We define the (complete) covariant deriva­
tive of f "p by 

(57) 

where r "P" I' is a tensor which undergoes an in­
homogeneous F-gauge transformation in order that 
(\7 J "p)F = \7 if ,,/). Since y"P transforms con­
tragrediently to f "p according to (21), it follows that 

(58) 

As an analog of the usual "geometrical" argument 
which leads to the Christoffel connection, we re­
quire that 

remain invariant under a parallel displacement of 
the tensors f "p, eaP E Ij. There follows the relation 

\7 ~M~' "p = 0, (59) 

which on contraction leads, according to (16), to 

(60) 

and which, in turn, with the aid of (8a), implies that 

V~c" = O. 

When we further require invariance of 

tf~.a~' y).M'). "fJf"fJ = i1l1/t 

(61) 

under parallel displacement of the tensor f afJ E Ij, 

ID W. L. Bade and H. Jehle, Ref. 9. 

which, with (59), leads to 

(62) 

Equations (59) and (62), which, respectively, state 

M"'''P + !.Mp.Y"Pr ~, + !.M~''''·r "p = 0 (63a) 
i" 2 1"" 2 ".,,, , 

a~' "p:c + !C"" apr* 1'/'. - !a~' ~,r a/'. = 0, (63b) 

enable us to examine the F-affine in a greater depth. 
For example, when the fiducial tensors are real, 
aI" "p = 81" ap; and (63b) reduces simply to 

Thus (63b) can be viewed as a generalized reality 
condition on the F affine. A solution of (63a) may 
be found with the aid of a tensor U apln - U",aP 
that fulfills the relation 

M B)' -.!M "PU "'M B)' ~65) 
1'1' - 4: JI.' afJ fiT, \' 

such as 

U"p"' = d-28[,,[~(bpJcdp. - cPJp.b'l)b", (66) 

d == c"b" ~ O. It readily follows that 

r ",P - -!.U ~, M "p - !.u ~'M "p (67) 
p.' ,,- "", i" 111" 2 p.' 'T': It. 

is a particular solution of (63a). Any other solution 
differs from (67) by a homogeneous term, H 1'/' I, 
for which 

which expresses a transposition symmetry relative 
to M""'P. The general solution is of the form 

where 

H "p - IE 6A M "p 
p.. ,,- 2' IJ.JI " n. , 

E I'·6A = E 6)'p. •. . ., 

(68) 

(69) 

there are thus ten such independent "vector" fields 
since (69) asks for the symmetric part of an essen­
tially 4 X 4 matrix. In summary, our relation for the 
F affine is given by (67) and arbitrary amounts of 
(68), all being subjected to the reality conditions 
of (63b), or (64) whenever the latter applies.20 

The undetermined fields (68) may either be set 

20 We emphasize strongly that none of the ten vector 
fields of the form (68) corresponds to the electromagnetic 
potential. This field has no "geometrical origin" from the 
present point of view since i,[;", can not remain invariant in 
the presence of the four-vector potential AI" The electro­
magnetic field breaks this invariance (while the invanance 
of i# is maintained), and must be added separately with a 
suitable strength for each field in question. 
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equal to zero, regarded as external fields other than 
the gravitational field, or given their own dynamical 
status and their own equations of motion as, e.g., 
in the Yang-Mills method. We shall not concern 
ourselves with the latter question here since anal­
ogous questions have been discussed in the litera­
ture for the conventional, generally covariant spinor 
Dirac equation.21

-
24 

If the additional fields (68) are set equal to zero 
then a suitable F-affine connection can be readily 
constructed. It suffices to choose an example with 
real fiducial tensors and to pick a real b a field in 
the formation of U a/T

; then the solution (67) 
satisfies both conditions (63). 

B. Redundant Tensorial Representation of the 
Generally Covariant Dirac Equation 

Although Eq. (59) was determined by a straight­
forward "geometrical" argument of invariance under 
parallel transport, the very fundamental equations 
(60) and (61) were direct consequences thereof. 
Equation (61) permits us to immediately generalize 
the redundant tensorial representation of the Dirac 
equation to a generally covariant form simply as 

+ m(c/fT~ - c/f~~) = O. (70) 

Indeed, Eq. (70) is the Euler-Lagrange equation 
obtained from the action functional (51) after the 
partial derivative is replaced by the generally co­
variant derivative and after the introduction of the 
invariant volume element. It is noteworthy that the 
Christoffel symbols do not explicitly appear in the 
generally covariant derivatives in (70) because of the 

21 0. Klein, Arkiv. Fysik. 17, 517 (1960). 
22 A. M. Brodskii, D. Ivanenko, and G. A. Sokolik, Zh. 

Eksperim. i Teor. Fiz. 41, 1307 (1961) [English trans!': Soviet 
Physics-JETP 14, 930 (1962)]. 

23 A. Peres, Nuovo Cimento Supp!. 24, 389 (1962). 
24 H. Leutwyler, Nuovo Cimento 26, 1066 (1962). 

simplification that arises for divergences of skew 
tensors; the Christoffel symbols do appear implicitly 
in the F-affine connection. Equation (60) would be 
important in discussing higher derivatives of (70) 
[such as the analog of the special relativistic equa­
tion (0 - m2)if; = OJ. We emphasize that the 
redundant tensorial representation equations (60) 
and (61) play a simplifying role in the Dirac 
equation similar to the conventional assumption 
'V p'y~ = 0,26 but which differ from this latter equa­
tion in that they arise from "geometrical" invariance 
arguments. 

It would be interesting to trace out further the 
dynamics of the undetermined fields in the F affine, 
e.g., in the manner of Leutwyler,24 and see to what 
extent, if any, these boson fields of "geometrical 
origin" might bear on questions in elementary­
particle physics. 
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The free energy obtained from the canonical partition function for a finite spin system possesses 
a certain convexity property, of which theorems by Peierls and Bogoliubov are particular appli­
cations. This property is used in proving the following result: Consider a regular lattice of spins in 
the form of a parallelepiped (in two dimensions a parallelogram, in one dimension a linear chain). 
The free energy of the system divided by the number of spins approaches a definite limit as the linear 
dimensions of the system become infinite. The limit is not influenced by certain common types of 
boundary conditions. A similar result, but with convergence understood in a weaker sense, holds for 
derivatives of the free energy such as entropy, magnetization, and specific heat. In the proof it is 
necessary to assume that the Hamiltonian has the translational symmetry of the spin system, and 
that long-range interactions decrease sufficiently rapidly with the distance r between spins. (For 
example, as r-a-. with E > 0 for interactions between pairs of spins in 3 dimensions.) 

I. INTRODUCTION 

SPIN systems, such as the Heisenberg and Ising 
models of ferromagnetism, provide some of the 

simplest applications of quantum statistical me­
chanics, and a study of them has already led to 
insights into the behavior of more complex systems 
such as classical gases. 

In this paper we prove rigorously a property often 
assumed to be "intuitively obvious": that the free 
energy of a spin system in a regular lattice, as defined 
by the cononical partition function, is extensive, 
that is, proportional to the size of the system for 
a large system. We assume the system is in the shape 
of a parallelepiped, though other simple shapes 
could be handled by the same techniques. The proof 
requires that the Hamiltonian have the translation 
symmetry of the lattice and the interaction terms 
decrease sufficiently rapidly with distance between 
the spins. The same extensive property is possessed, 
though in a somewhat weaker sense, by quantities, 
such as the entropy and magnetization, which are 
expressed as derivatives of the free energy with 
respect to a parameter. The results are independent 
of boundary conditions of the usual kind employed 
in calculations. 

The proof utilizes a convexity property of the 
free energy, of which theorems by Peierls and 
Bogoliubov are particular applications. This prop­
erty, of some interest in itself, is discussed in Sec. II. 

The actual proof that the free energy is extensive 
begins in Sec. IV where it is carried out in detail 
in Sec. IV.A for a linear chain. We feel that to first 

* This work was supported in part by the U. S. Office of 
Naval Research. 

t National Science Foundation Postdoctoral Fellow. Pres­
ent address: Department of Physics, Carnegie Institute of 
Technology, Pittsburgh, Pennsylvania. 

state and then prove the most general result for 
three dimensions (summarized in Sec. VI) would 
conceal the elementary character of the proof within 
a thicket of geometrical complications. These com­
plications are introduced gradually in Sec. IV.B-D. 
Section V treats the derivatives of the free energy. 

The previous work on this subject of which we 
are aware treats the partition function of a classical 
gas,I and the results also apply to the spin-! Ising 
model, which may be regarded as a lattice gas.2 

Recently Ruelle3 has extended his work on classical 
gases to quantum gases. Van Kampen has indepen­
dently carried out a proof very similar to ours for 
the case of a spin system, and we are indebted to 
him for helpful correspondence. 

II. CONVEXITY OF THE FREE ENERGY 

All operators discussed in this section are assumed 
to be n X n Hermitian matrices, where n is a fixed 
finite integer. The "canonical" free energy F asso­
ciated with a Hermitian matrix X is defined by 

F(X) = _(3-1 log tr [e-P:JC], (1) 

where tr stands for trace, and (3 = l/kT ~ 0 is 
the inverse temperature. 

Let Xo and Xl be any two Hermitian matrices, 
and A a number between 0 and 1. The free energy 
defined by (1) has the important convexity property: 

F[(1 - A)Xo + AXI] ~ (1 - 'A)F(Xo) + 'AF(Xl)' (2) 

A closely related inequality is Bogoliubov's theorem: 

F(Xo + Xl) :::; F(Xo) + tr [Xle-~:JC·]/tr [e-~:JC·]. (3) 

1 L. Van Hove, Physica 15, 951 (1949); C. N. Yang and 
T. D. Lee, Phys. Rev. 87, 404 (1952); L. Witten, ibid. 93, 
1131 (1954); D. Ruelle, Relv. Phys. Acta 36, 183 (1963). 

2 T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952). 
3 D. Ruelle, Helv. Phys. Acta 36,789 (1963). 
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FIG.!. A curve which is convex upwards has the properties 
(a) a tangent to the curve at some point lies above the curve; 
(b) the second derivative (where it exists) is negative; (c) a 
chord joining two points on the curve lies beneath the curve. 

Also, if X is a real parameter, the function 

f(x) = F(Xo + XXI) (4) 

and (7) as 

f(x) :::; f(xo) + (x - xo)f'(xo), (8) 

or, in other words, the curve of the function f(x) 
always lies below the tangent to the curve at f(xo) 
(see Fig. 1). This property is one characteristic of 
a function which is convex upwards, 9 and is equiv­
alent to (5) in the case where the second derivative 
is continuous. 

Another characteristic property of a convex-up­
wards function is that the chord joining two points 
of the curve of the function (see Fig. 1) always 
lies below the curve. In particular, the function 

(9) 

has the property 

f"(x) :::; o. 
is convex upwards by (3) or (5) and therefore, for 

(5) any A between 0 and 1, 

(Note that f has a continuous second derivative 
since the matrices are finite-dimensional.) An imme­
diate consequence of (3) is Peierls' theorem4

: Let 
X D be the diagonal part of X in some representa­
tion; that is, the matrix obtained by setting all 
the off-diagonal elements of X equal to zero. Then 

(6) 

Several proofs of Peierls' theorem (6) are found 
in the literature.6

•
6 The result (3) is ascribed to 

Bogoliubov by Kvasnikov7 and more than one proof 
has been published. 6

•
s Ruelle3 has proved (2) and 

(6) for a certain class of self-adjoint operators in 
infinite-dimensional Hilbert space. We shall not 
repeat these proofs, but merely point out the close 
connection between the inequalities (2), (3), (5), 
and (6). 

From the definitions (1) and (4) it follows that 

f'(x) = (XI) = tr [Xle-Il (:JCo+z:JCd]/tr [e-Il (:JCo+z:JCd] (7) 

whether or not Xo and Xl commute, since the trace 
of an operator product is invariant under a cyclic 
permutation of the operators. If now in (3) we 
replace Xo by Xo + XOXI and Xl by (x - xo)XI, 
the inequality may be written in the notation of (4) 

• R. E. Peierls, Phys. Rev. 54, 918 (1938). 
5 In addition to Ref. 4 see T. D. Schultz, Nuovo Cimento 8, 

943 (1958); D. J. Thouless, The Quantum Mechanics of Many­
Body Systems (Academic Press Inc., New York, 1961), p. 
108; K. Huang, Statistical Mechanics (John Wiley & Sons, 
Inc., New York, 1963), p. 220; D. Ruelle, Ref. 3. 

S H. Falk, Physica 29, 1114 (1963); B. Muhlschlegel, 
Sitzber. Math. Naturw. Kl. Bayer. Akad. Wiss. Miinchen 
1960, p. 123. 

7 J. Kvasnikov, Doklady Akad. Nauk SSSR 110, 755 
(1956); see also V. V. Tolmachev, Doklady Akad. Nauk 
SSSR 134, 1324 (1960) [English transl.: Soviet Phys.-Doklady 
5, 984 (1961)]. 

8 J. Czerwonko, Bull. Acad. Polon. Sci. Cl. III 7, 639 
(1959); M. Girardeau, J. Math. Phys. 3, 131 (1962). 

g(A) ~ (1 - A)g(O) + Ag(I), (10) 

which is precisely the inequality (2). 
The foregoing discussion shows that the inequal­

ities (2), (3), and (5) are really equivalent, and 
closely correspond to the three properties of a real 
convex function illustrated in Fig. 1. Peierls' the­
orem (6) is an immediate consequence of (3) if in 
the latter inequality Xo is replaced by XD, Xl by 
X - XD, and the traces on the right-hand side 
of (3) are evaluated in the representation where 
X D is diagonal. 

The entropy defined as -tr [p log p], where p 
is a density matrix, possesses a convexity property 
quite analogous to (2).10 

The convexity property of the free energy has 
a number of interesting consequences; we shall 
point out two of them. 

(a) The free energy is a convex function of the 
Hamiltonian and the temperature T( = l/kf3) to­
gether. Let Til T2 be nonnegative numbers, Xl and 
X 2 Hermitian matrices, and A a number between 
o and 1. Define 

T = (1 - A)TI + AT2 ; X = (1 - A)XI + AX2 • (11) 

The inequality 

F(x, T) ~ (1 - A)F(XI' T I ) + AF(X2 , T2) (12) 

• References on convex functions: R. Courant, Differential 
and Integral Calculus (Interscience Publishers, Inc., New 
York, 1936) Vol. II, p. 325; G. H. Hardy, J. E. Littlewood, 
and G. P6lya, Inequalities (Cambridge University Press, 
Cambridge, England, 1959), 2nd ed., Chap. III; E. F. Becken­
bach, Bull. Am. Math. Soc. 54, 439 (1948). 

10 J. von Neumann, Mathematical Foundations of Quantum 
Mechanics (Princeton University Press, Princeton, New 
Jersey, 1955), p. 390; E. H. Wichmann, J. Math. Phys. 4, 
884 (1963). 
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is easily verified by means of the relationship 

F(x, T) = TF(X/T, 1) (13) 

together with the inequality (2). 
(b) Let Xo and Xl be Hermitian matrices, let X 

be their sum, and let fJ. and p be the maximum and 
minimum eigenvalues of XII respectively. The 
bounds 

F(Xo) + p :::; F(X) :::; F(Xo) + fJ. (14) 

are a consequence of Bogoliubov's theorem.ll The 
upper bound is obtained by noting that the second 
term on the right side of (3) is a weighted average 
of the eigenvalues of Xl with positive weights, hence 
certainly less than fJ.. The lower bound comes from 
the same argument upon interchanging the roles 
of X and Xo. 

The inequality (14) is at the heart of our proof 
that the free energy is extensive, and hence we shall 
give an alternate derivation. Let 

Xl :::; X2 :::; ••• :::; x.. 
be the n eigenvalues of X o, and 

PI :::; P, :::; •.• :::; P. 

the eigenvalues of X. The matrix Xl - pI, where 
I is the identity, is clearly a positive matrix (Le., 
none of its eigenvalues are negative). Hence the 
mth eigenvalue of 

X - pI = Xo + (Xl - pI), (15) 

which is P .. - P, must exceed Am, the mth eigenvalue 
of X O

l
': 

pm ~ x... + P. (16) 

Similarly, one may show that 

Pm:::; Am + fJ., (17) 
and therefore 

from which (14) follows upon taking logarithms and 
utilizing the definition (1). 

For our purposes, a less precise form of (14) 
will suffice: 

IF(Xo + Xl) - F(Xo) I :::; Ixd. (19) 

By Ixll we denote the matrix norm, equal to the 
11 We are indebted to N. G. van Kampen for sending us 

another derivation of (14) which is similar to, but not de­
pendent on, the use of Bogoliubov's theorem. 

12 By an elementary application of the maximum modulus 
principle. See F. Riesz and B. Sz.-Nagy, Functional Analysis 
(Frederick Ungar Publishing Company, New York, 1955), pp. 
238f; R. Bellman, Introduction to Matrix Analysis (McGraw­
Hill Book Company, Inc., New York, 1960), p. 115. 

maximum of the absolute values of the eigenvalues 
for a Hermitian matrix, and possessing the important 
properties 

IXo + xd :::; IXol + Ixd, 

laXI = lal Ixl, 

where a is a real number. 

III. SPIN SYSTEMS: SOME NOTATION 

(20) 

(21) 

Consider a system of N atoms, each with spin 8 
(integral or half integral). The vector space of 
interest consists of all complex-valued functions of 
the N arguments XII X • ... X N where each argument 
can take on only the 28 + 1 values -8, -8 + 
1, "', 8 - 1, 8. The space has dimension n = 
(28 + l)N, and operators in the space are n X n 
matrices. The statement "h(l, 2) acts only on the 
coordinates 1 and 2" means the operator has the 
following property: With every function <I> (X 11 X.) 
there is associated a function <I>'(Xl , X 2) such that 
for any function 'Ir(X3, X., '" , X N ) the relation 

h(l, 2)[<I>(Xl , X 2)'Ir(X3, ... ,XN )] 

= <I>'(XI , X.)'Ir(Xa, ••• , X N ) (22) 
is satisfied. 

Clearly, h(l, 2) may be regarded as a (28 + 1)2_ 
dimensional matrix-which we call, for brevity, the 
"reduced matrix"-in the space spanned by all 
functions <I>(XI' X.). More generally, one may con­
sider an operator "acting only on the coordinates a" 
where a contains m coordinates from the set X I, 

X 2,'" ,XN • We shall also say the operator "involves" 
each of the m coordinates in a. The corresponding 
reduced matrix is of dimension (28 + l)m. 

Let a and CB be two disjoint subsets of the N 
coordinates, and hi and h2 two operators acting only 
on the coordinates a and CB, respectively. By tr [a; hi] 
we mean the sum of the diagonal elements of the 
reduced matrix hI' The relation13 

(23) 

will be of use in Sec. IV. If ~ denotes the set of 
all N coordinates, we shall sometimes write tr[h] in 
place of tr [~; h] if no confusion is likely to arise. 

IV. PROOF THAT THE FREE ENERGY 
IS EXTENSIVE 

A. Linear Chain with Nearest-Neighbor 
Interactions. Prototype Hamiltonian 

and Translational Invariance 
We use the term prototype Hamiltonian for an op­
erator formally defined on an infinite lattice. For a 

13 In the space of all functions on a V ffi, h1h. is the "direct 
product" of the two reduced matrices. 
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linear chain of atoms, each with spin 8, a possible 
prototype Hamiltonian is 

'" 
X = L h(i, i + 1), (24) 

i=-oo 

where h(i, i + 1) is an operator14 acting only on 
the coordinates X, and X,+I' The sum (24) may 
be understood in a formal sense, since the prototype 
Hamiltonian will be employed for conceptual, not 
computational, purposes. 

Consider a translation of the lattice in which 
Xi is carried into X HI • Such a translation may be 
thought of as generating a transformation on the 
summands in (24) with each h(i, i + 1) transformed 
into an operator h'(i + 1, i + 2) acting on the 
coordinates X i + 1 , X H2• If 

'" 
X' = L h'(i, i + 1) (25) 

i=-ro 

is formally identical to X in the sense that to 
every term in the sum (24) there is one and only 
one identical term in (2.5)-01', in other words, if 
h(i, i + 1) h'(i, i + 1) for all i-then X will 
be called translationally invariant. IS 

The operator 
N-I 

X(N) = L h(i, i + 1) (26) 

is obtained by discarding from the prototype Hamil­
tonian (24) all terms which act on spin coordinates 
outside the set XI, X 2 , ••• XN. The norm16 

€ = Ih(i, i + 1)1 (27) 

is independent of i by translational invariance. Note 
that € is the same whether one uses the complete 
or the reduced matrix for h(i, i + 1). 

Let X denote the coordinates XI, X 2, XlV' 
The free energy associated with (26) is 

F(N) = _(3-1 log tr [Xi e-PX(N)]. (28) 

For convenience, define the normalized free energy 

(29) 

We wish to show that feN) achieves a limiting 
value as N becomes infinite, for every value of (:J 

greater than zero. 17 Let the size of the system be 
14 All operators are assumed to be Hermitian. 
16 In most applications, the translational invariance of the 

spin Hamiltonian (or lack thereof) is obvious from inspection. 
16 The norm exists provided that all the matrix elements 

involved are finite; that is, there is no "rigid" coupling be­
tween different spins. 

17 At P = 0 the free energy of a finite system is undefined. 
However, PI(N) is well defined and continuous in the vicinity 
of P = 0 and converges to the well-defined function PI as N 
becomes infinite. 

doubled to include 2N spins. The new Hamiltonian is 
2N-l 

X(2N) = :E h(i, i + 1) 
i=l 

= X(N) + x.(N) + heN, N + 1) 

= Xo + heN, N + 1), 

where X(N) is defined by (28) and 
2N-J 

JC.(N) = :E h(i, i + 1). 
i-N+l 

Let 'Y denote the coordinates X N + 1, 

Define Fo by 

e-flFo = tr [X U 'Yi e-.sXO
] 

= tr [X; e-flX(N)] tr ['Yi e-PX.(Nl] 

= (tr [X; e-flJC(N)]Y i 

whence it follows that 

(30) 

(31) 

(32) 

Fo = 2F(N). (33) 
Now since 

F(2N) _(3-1 log tr [X U 'Yi e- fJX (2N)], (34) 

one may show by means of (30), (27), (19), and 
(33) that 

1F(2N) - 2F(N) 1 :s; e, (35) 

or, dividing both sides by 2N, 

If(2N) - feN) 1 :s; el2N. (36) 

Next consider a chain of length MN, where M 
is an integer.18 The chain may be split into M sec­
tions of length N, and the Hamiltonian written as 

m-l m-l 

X(MN) = :E Xp(N) + :E h(pN, pN + 1), (37) 
p=O p=l 

where 
N-I 

Xp(N) = :E h(pN + i, pN + i + 1) (38) 
i=l 

is the Hamiltonian for the (p + l)th section of 
length N. In analogy with (35) and by use of (20), 
one obtains the result 

IF(MN) - MF(N) 1 :s; (M - l)e < Me, (39) 

or, dividing both sides by MN, 

If(MN) - f(N) I < fiN. (40) 

One may interchange the roles of M and N: 

If(MN) - f(M)l < elM, (41) 
18 I am indebted to Dr. V. Celli for suggesting an important 

simplification of the proof at this point. 
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and combine (40) and (41) to obtain 

If(M) - f(N) I < E(N- l + M- l
). (42) 

Therefore feN) is a Cauchy sequence with a limit f, 
and 

If - f(N) I < E/N. (43) 

This completes the proof that feN) converges to 
a limit in the case of a linear chain with nearest­
neighbor interaction. The proof, in essence, is nothing 
but a precise statement of the notion that" surface" 
energies may be neglected compared to "volume" 
energies for a large system. The generalization to 
more complex cases is almost obvious. 

The Hamiltonian (26) corresponds to "periodic 
boundary conditions" if we add to it the term 
heN, 1). By means of (19), one may show that 
the new normalized free energy differs from (29) 
by at most elN, a negligible quantity as N becomes 
infinite. Similar arguments may be used for the 
boundary conditions where one or both of the end 
spins are held "fixed." 

B. Two-Dimensional Lattice: Interactions 
of Finite Range 

Consider a regular, two-dimensional crystal ar­
ranged in a lattice with primitive translation vectors 
a and b, and a finite number of different spins 
(which may have different values of S) in each 
unit cell. The prototype Hamiltonian X shall have 
the following properties: 

(a) X is translationally invariant; 
(b) it consists of a sum of terms, each of which 

acts on a group of spins no two of which are separated 
by a distance greater than a constant r, where r 
does not depend on the term considered; 

(c) there are only a finite number of terms acting 
on a given spin. 

Suppose there are m spins in a particular unit cell 
Functions of the m coordinates Xl' X 2 , ••• , X", 
may be regarded as functions of a single "super 
spin" coordinate Y which takes on 

... 
II (2S. + 1) 
i=l 

values if the coordinate X. takes on (2S. + 1) 
values. Hence without loss of generality we may 
suppose that there is only one spin per unit cell. 
The translational invariance of the Hamiltonian and 
also Properties (b) and (c) are preserved if we 
suppose the lattice to be distorted into one in which 
a and b are orthogonal unit vectors. The constant r 

in (b) may have to be redefined, but still remains 
finite. In other words we may, for the purpose of the 
proof, assume that the prototype Hamiltonian is 
defined for a simple square lattice with one spin 
per lattice site. 

Consider a rectangle of spins with sides MP and 
NQ, where M, N, P, Q are positive integers. The 
rectangle containing MPNQ spins may be thought 
of as composed of PQ smaller rectangles, each with 
sides M and N. We define X(MP, NQ) as the sum 
of all terms in the prototype Hamiltonian which 
involve only spins located in the large rectangle. 
The Hamiltonian for the ith smaller rectangle, 
x.(M, N), is similarly defined. We may write 

PO 

X(MP, NQ) = L: Xi(M, N) + X', (44) 
i=l 

where X' contains all terms in X(MP, NQ) which 
involve spins in two or more of the smaller rectangles. 

Let hl, h2' ... h", [there are at most a finite number, 
by Property (c)] be all the terms in the prototype 
Hamiltonian which act on the first spin. Definel6 

(45) 

We may find a bound for X' by noting that each 
term in X' must involve some spin within a distance 
r-1 of the boundary of one of the smaller rectangles. 
There are at most 2(M + N)PQr such spins in all 
the PQ smaller rectangles. Hence, using a very 
liberal estimate, we find 

Ix/i ~ 2e(M + N)PQr, (46) 

which combined with (44) and (19) yields the result 

If(MP, NQ) - f(M, N)I ~ 2er(M-1 + N- l
). (47) 

By an argument analogous to (40) through (43) 
one easily shows that f(M, N) approaches a limiting 
value f as both M and N increase to infinity, and 

If - f(M, N)I ~ 2Er(M-1 + N- l
). (48) 

Once again it is clear that the boundary conditions 
have negligible effect for large rectangles if they 
only involve a modification of terms in the Hamil­
tonian near the boundary of the rectangle. 

C. Two-Dimensional Lattice: Interactions 
of Unlimited Range 

As in part B of this section, we need only consider 
a simple square lattice with one spin per lattice 
site. The prototype Hamiltonian X shall have the 
following properties: 
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(a) Translational invariance. 
(b) X consists of a sum of terms. Any given 

term h acts on a finite set of spins, and the maximum 
distance between two spins in the set is r(h), the 
"range" of h. 

(c) For any number R < co, there are only a 
finite number of terms in X with range less than 
R involving any given spin coordinate. 

(d) Let h, for i = 1, 2, 3, ... be all the terms 
in X involving the coordinate Xl. There is a number 
~ > 0 and a constant e < co such that, given any 
positive number R, 

L: Ihil < eR-a
, (49) 

rCh) ~R 

where the sum extends over all hi with range 
exceeding R. 

Conditions (a)-(d) may also be applied in the 
case of 1- or 3-dimensionallattices. Property (d) is 
the requirement that terms of long range go to zero 
sufficiently rapidly. A case often met in practice is 
where h, = h(I, i) acts only on the coordinates 
Xl and Xi, in which case it is sufficient to require that 

i ~ I, (50) 

where r, is the distance between the first and ith 
spins, D a constant, and d( = 1, 2, Qr 3) the dimen­
sionality of the lattice. 

As in part B of this section, let X (MP, NQ) 
consist of all terms in the prototype Hamiltonian 
which involve only spins located in an MP by NQ 
rectangle. The X,(M, N) are similarly defined. The 
term X' in (44) has a bound of the form (see Appen­
dix B): 

(PQr l Ix'i 

{

e'(MNH + NMH) for 0 < ~ < I, 

:s; e'(M log N + N log M) for ~ = I, 

e'(M + N) for ~ > 1, 

(51) 

where e' depends on the constant e appearing in 
(49) and also on ~, but not on M, N, P, or Q. Using 
the bound (51), it is easily shown that f(M, N) 
approaches a limiting value as both !vI and N increase 
to infinity. 

The use of periodic boundary conditions presents 
some difficulties when the range of interaction is 
not bounded, due to the terms in the Hamiltonian 
in which a spin "interacts with itself." Our method 
of proof is not directly applicable to this case, and 
we have not investigated under what circumstances 
the free energy approaches the limiting value ob-

tained above using "nonperiodic" boundary con­
ditions. 

D. Three-Dimensional Lattices 

The techniques of parts A-C of this section may 
be applied immediately to three-dimensional lattices 
with only a few obvious alterations. Provided the 
prototype Hamiltonian satisfies Conditions (a)-(c) 
of part B (interactions of finite range) or (a)-(d) 
of part C (interactions with unbounded range), the 
free energy f(!vI, N, P) of a parallelepiped M by 
N by P unit cells on a side approaches a limiting 
value as all three integers approach infinity. 

V. DERIVATIVES OF THE FREE ENERGY 

Suppose that the prototype Hamiltonian of a spin 
system is a function of a real parameter x and 
satisfies the conditions of Sec. IV.B or C for all 
x in some interval. Or, instead of a parameter in 
the Hamiltonian, x could be the temperature. We 
have shown that the normalized free energy for a 
system of N spins, feN, x), converges to a definite 
limit as N becomes infinitel9

: 

f(x) = lim feN, x). (52) 
N ... ", 

Consider the quantity (we assume the right-hand 
side is defined) 

gn(N, x) = (d/dx)"f(N, x). (53) 

Is it true that 

lim gn(N, x) = (d/dx)"f(x)? (54) 
N"'<D 

For instance, let x be the magnetic field and 
-gl(X) the magnetization per spin. Equation (54) 
(if true) asserts that the magnetization is extensive, 
and its limiting value for a large system is the 
derivative of the limiting value of the free energy. 

We shall show that Eq. (54) holds when certain 
restrictions are placed on the Hamiltonian, but it 
must be understood in a weaker sense than (52); 
that is, the convergence is not necessarily pointwise. 
Slightly sharper results are possible for n = 1, 
which we discuss first. 

Let the prototype Hamiltonian be of the form 

(55) 

where both Xl and 3C2 are prototype Hamiltonians 
satisfying the conditions of Sec. IV.B or C. For a 
system of N spins, the Hamiltonian is a linear 

19 We assume here and in the following discussion that 
the crystal is in the form of a parallelepiped (parallelogram 
or line) and that the linear dimensions become infinite as 
N -> <0. 
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function of x and feN, x) a convex (upwards) 
function of x by (5). Pointwise convergence (52) 
guarantees that f(x) is also convex, and therefore 
(see Appendix A) 

lim df(N, x)/dx = df(x)/dx (56) 
N_co 

at every point where the right side is continuous. 
Since df / dx is monotone decreasing, it is discon­
tinuous at most at a countable number of points. 

Note that this argument also applies to the 
(normalized) energy and entropy, which may both 
be expressed in terms of the free energy and its 
first derivative with respect to the temperature. 
The free energy is a convex function of the tem­
perature [Sec. II, Remark (a)]. 

Next consider the case where Je(N, x) is not 
necessarily a linear function of x, but does possess 
a continuous first and piecewise continuous second 
derivative20 for x in the interval of interest, [a, b], 
which we shall assume includes the origin. Further 
assume a bound for the second derivative of the form 

(57) 

where e is independent of x and N. When the range 
of interaction is bounded, a bound on the second 
derivative of each term in the prototype Hamiltonian 
is equivalent to (57). 

Under the conditions of the preceding paragraph, 
the expansion 

Je(N, x) = Je(N, 0) + Je/(N, 0) + jX2Je I (N, x) (58) 

(we denote the derivative with respect to x by a 
prime) holds for all values of x in [a, b] and the 
correction term is bounded by 

(59) 

An application of Bogoliubov's theorem (3) together 
with (59) yields the result 

feN, x) =::; feN, 0) + xf'(N, 0) + jex2
, (60) 

which implies that the curve of the function 

f*(N, x) = feN, x) - jex2 (61) 

lies everywhere below a line tangent to the curve 
at x = O. A similar result holds for I*(N, x) at all 
other points of Ca, b). Thus t*(N, x) is a convex 
(upwards) function to which one can apply the 
results of Appendix A with the same conclusion as 
before: Eq. (56) is satisfied at every point where 
the right side is continuous. 

20 That is, each matrix element (in some given representa­
tion) has these properties. 

Second and Higher-Order Derivatives 

The essential problem, as is clear from (52) to 
(54), is to interchange lim (N ~ a:l) with d/dx. 
Such an interchange is possible, in most cases, if 
lim (N ~ a:l) is taken in the sense of "ideal func­
tions" or "generalized functions," characterized by 
their inner products with a class of suitably chosen 
"test functions" rather than by their values at each 
point in an interval.:ll 

For example, if Je(N, x) is a continuous function 
of x in the interval [a, b] and satisfies the conditions 
of Sec. IV C with the constant e in (49) independent 
of x, then feN, x) (which is a continuous function of x) 
converges to I(x) uniformly, which implies conver­
gence in the sense of "ideal functions." If the test 
functions have continuous derivatives of arbitrary 
order and vanish, together with all their derivatives, 
at the end points of [a, b], then the nth derivative 
of feN, x) converges to the nth derivative of I(x) 
in the sense of ideal functions. 22 

The penalty for this freedom in interchanging 
limiting processes is, of course, that IIconvergence" 
and "function" must both be understood in a 
weaker (or broader) sense than is customary in 
elementary calculus. To give an example, the 
(normalized) magnetization M as a function of the 
magnetic field H is discontinuous at H = 0 for the 
two-dimensional Ising ferromagneea in the limit 
N ~ a:l, provided the temperature is less than the 
transition temperature. The susceptibility, dMldH, 
is a continuous function of H for finite N but 
IIconverges" to an ideal function with the character 
of a Dirac delta function at H = 0 in the limit N ~ a:l. 

VI. SUMMARY 

Consider a regular lattice of spins in one, two, or 
three dimensions with an arbitrary but finite number 
of spins per unit cell. If the prototype Hamiltonian 
defined (formally) for the infinite lattice has the 
translational symmetry of the lattice and also 
satisfies the other requirements of Sec. IV B or 
IV C, then the normalized free energy (free energy 
divided by N) for a crystal in the form of a par­
allelepiped (parallelogram or linear chain) containing 
N unit cells converges to a limit as the linear dimen-

21 M. J. Lighthill, An Introduction to Fourier Analysis and 
GeTteralized Functions (Cambridge University Press, Cam­
bridge, England, 1959); R. Courant, Methods of Mathemati­
cal Physics (John Wiley & Sons, Inc., New York, 1962) 2nd 
ed., Vol. II, p. 766; A. Erdelyi in Modern Mathematics for 
the Engineer, Second Series, edited by E. F. Beckenbach 
(McGraw-HilI Bo.ok Company, Inc., New York, 1961), p. 5. 

22 The nth denvative of f(N, x) or f(x) may not exist in 
the usual sense. 

22 G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25, 
353 (1953). 
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sions become infinite. The proof was carried out for 
the case where the Hamiltonian for the finite system 
contains all terms of the prototype Hamiltonian 
involving only spins in the N unit cells under con­
sideration. However, other sensible boundary condi­
tions lead to the same result: e.g., if the surface 
spins are held "fixed," or if periodic boundary 
conditions are employed when the interactions are 
of finite range. 24 

The convergence of the normalized free energy 
guarantees the convergence of its derivatives with 
respect to temperature or a parameter appearing in 
the Hamiltonian, but (in general) in a weaker sense 
than pointwise convergence. (For details and restric­
tions on the Hamiltonian, see Sec. V.) 

APPENDIX A. THEOREM ON SEQUENCES 
OF CONVEX FUNCTIONS 

Let fn(x) be a sequence of functions defined on 
fa, b] which are all convex upwards, and let gn(x) 
be the first derivative of fn(x). If there exists a 
function f(x) such that 

lim fn(x) = t(x) (AI) 

for every point x in fa, b], then f(x) is convex up­
wards, and, furthermore, 

lim gn(X) = g(x) , (A2) 

where g(x) is the first derivative of f(x), and (A2) 
holds at every point where g(x) is continuous. 

The convexity of f(x) follows immediately from 
(AI) and the definition of a convex function. 9 There­
fore g(x), together with each of the gn(x), is a mono­
tone decreasing function with at most a countable 
number of jump discontinuities. 

Suppose that g(x) is continuous at x = X o, but 
that (A2) does not hold at this point; in particular, 
assume that there is a number E > 0 such that 

(A3) 

is satisfied for arbitrarily large values of m. We 
shall show that this contradicts (AI). Since g(x) is 
continuous at Xo, there exists a number 0 > 0 
such that the points Xo ± 0 are in fa, b], and 

(A4) 

provided that 

Ix - xol ::; o. (A5) 

Now since gm(x) as well as g(x) is a monotone de-
24 See the remark at the end of Sec. IV.C. 

creasing function, (A3) and (A4) imply, for x be­
tween Xo and Xo + 0, 

(A6) 

Integrate both sides of the inequality from Xo to 
Xo + 0: 

[f(xo + 0) - fm(xo + 0)] 

+ [tm(Xo) - t(xo)] 2:: !OE. (A7) 

But if (A7) holds for arbitrarily large values of m, 
then either at Xo or at Xo + 0, fn(x) does not converge 
to f(x), in contradiction to (AI). A similar argument 
works when, in place of (A3), we have 

(AS) 

for arbitrarily large values of m. 
The step from (A6) to (A7) uses the fact that 

a convex function is absolutely continuous25 and 
hence equal to the indefinite integral of its de­
rivative. 26 

APPENDIX B. DERIVATION OF THE BOUND (51) 
FROM THE INEQUALITY (49) 

Consider a particular spin r located in the jth 
M X N rectangle a distance m (the lattice constant 
is unity) from the nearest edge. Any term in X' 
which involves the spin r must also (by definition) 
involve at least one spin outside the jth rectangle; 
therefore its range is at least m + 1. Thus the sum 
of the norms of all terms in X' involving the spin r 
is less than e,(m + 1)-0 by (49). 

Now in all PQ of the smaller rectangles there 
are not more than 2(M + N)PQ spins at a distance 
m from the nearest edge of the rectangle to which 
each spin belongs. Hence a very liberal upper bound 
on the norm of X' is provided by 

!M 
2(M + N)PQ L: e,(m + I)-a (BI) 

m=O 

if we assume (without loss of generality) that 
M ::; N. For the case 0 < 0 < 1, the corresponding 
integral provides for the sum in (Bl) the bound 

e,(1 - o)-\!M + 1)1-0 ::; !e, I M1-O (B2) 

for a suitably defined e,/. From this the inequality 
(51) follows. (Note that M 2

-
O 

::; MN 1
-

a, since we 
assumed M ::; N.) The cases 0 = 1 and 0 > 1 
may be worked out in similar fashion. 

25 As the reader may easily verify for himself; or see 1. P. 
N atanson, Theory of Functions of a Real Variable (Frederick 
Ungar Publishing Company, New York, 1960), Vol. II, p. 230. 

26 F. Riesz and B. Sz.-Nagy, Ref. 12, p. 50. 
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A Theorem on the Determinantal Solution of the Fredholm Equation 
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For a Fredholm equation with Green's-function-type kernel, a new proof is given of a known theorem 
relating the Fredholm determinant with the behavior of the solution at the origin. The utility of this 
theorem in practical calculations is pointed out, as are some of its implications for potential scattering 
in quantum mechanics. The scattering phase shift is shown to have the property (ajaA)o(E, A) 
-11" (,pEl V I,pE)' 

I. INTRODUCTION 

CONSIDER the Fredholm equation 

1/;(x) = t + XK 1/; == j(x) + X f K(x, s)1/;(s) ds. (1) 

Following Brysk, I we shall say that the kernel 
K is of the Green's function type if it has the form 

(2) 

where r < and r> are, respectively, the lesser and 
greater of x and s. The main content of this paper 
is a new proof of a known theorem relating, for a 
kernel of this type, the Fredholm determinant and 
the quantity I1/; I, where we have introduced the 
notation 

{1/;1 == lim 1/;(x)/t(x). 

The theorem is stated and discussed in Sec. II. 
A kernel of the Green's function type arises in the 
partial-wave analysis of quantum scattering, and 
in Sec. III the theorem is further discussed within 
that context. We conclude with the proof of the 
theorem, Sec. IV. The remainder of this section 
presents notation. 

The solution of Eq. (1) is 

1/; = t + Hf· (4) 

The determinantal method2 expresses the resolvent 
in the form 

rex, s; X) = D(x, s; X)/d(X), (5) 

where 
~ 

D(x, s; X) = L X"D,,(x, s), (6) 
.. -0 

and 

(7) 

I H. Brysk, J. Math. Phys. 4, 1536 (1963). 

In the above, do = 1, Do = K, and for n rf 0, 

D .. (x, s) = (- )"(n!)-I 

X t ... t ~n(x, s; tl , '" , tn) dt l ••• dt .. , 

and 

dn = -n- I Tr D"_I == -n- I i b 

Dn_l(s, s) ds, 

where 

K(x, s) K(x, tl ) 

K(tl' s) K(tl' tl) 

K(x, tn) 

K(tl' t .. ) . 

(8) 

(9) 

(10) 

The functions D(x, s; X) and d(X) can be shown 
to be entire functions of X if tr (KtK) is finite. 2 

The particular expansions (8), (9), and (10) further 
require that tr K exist. 3 

II. THEOREM ON THE FREDHOLM 
DETERMINANT 

The main result referred to is the theorem 

If K is of the Green's function type, then 

(11) 

The proof presented in Sec. IV utilizes only the 
definitions (8), (9), and (10); the theorem is there­
fore valid whenever the right-hand side of (11) 
exists. 

2 See, for example, S. G. Mikhlin, Integral Equations 
(Pergamon Press, Inc., New York, 1957), or the book of the 
same title by F. Smithies (Cambridge University Press, New 
York,1958) . 

3 In quantum scattering, S. Weinberg, Phys. Rev. 131, 
443 (1963), has shown that tr (KtK) is finite if and only if 
the potential satisfies 

fo W(r)I2r2 dr < 00 and f"" IV(r)12 dr < 00. 

We also note that tr K = J(f) so, by Eq. (13), will exist if 
and only if (1f (1)) is finite, where 1f (1)(x) is the first Born 
approximation. 

1223 
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This theorem is essentially contained in (or at 
least very strongly implied by) Eq. (22) of Ref. (I).' 
One easily extracts the theorem from that equation 
upon noticing that 

{K,p} = J(,p) == t g(x)V(x),p(x) dx, 

so that Eq. (1) gives 

{,p} = 1 + AJ(,p). 

(12) 

(13) 

When tr (Kt K) is finite the relevant power series 
are everywhere convergent, and on applying (11) 
we find 

'" 
A{Dt} = - L: A,,+ldn+1 = -d('A) + 1. (14) 

,,-0 

Equations (4) and (5) then yield the corollary 

If K is of the Green's function type, and tr K 
and tr (Kt K) are finite, then 

d(X) = {,prl. (15) 

m. QUANTUM SCATTERING 

In the case of potential scattering, the theorem 
(11) has long been known, or at least very strongly 
implied. The Jost function 5'( -k) has the properties6 

and 
5'(-k) = d(X) , 

5'(-k)-1 = 1{,p}1 ei6
, 

(23) 

(24) 

where 0 is the scattering phase shift. One need only 
add to this a demonstration that 0 is also the phase 
of {,p} to obtain the corollary (15), and from it 
(by expanding a power series) the relation (11). 
We claim for the present proof the advantages of 
simplicity and generality. Indeed, as the above 
indicates, the corollary (15) would be of considerable 
heuristic utility in the presentation of the theory 
of J ost functions. 

The corollary (15) may be of significant theoretical 
value as well. For example, for potential scattering 
at energy E with the system Hamiltonian H = Ho + 
A V, the resolvent is7 

Upon taking the trace of Eq. (6) one finds2 

tr r = -(d/dX) In d(X), 
r = [1/(E - H + iE)]V, 

(16) and Eq. (17) becomes 

(25) 

so that the corollary provides a connection between 
{,p} and the trace of the resolvent: 

(d/dX) In {,p} = tr r. (17) 

Theorem (11) can be of considerable utility in 
practical calculations. Equivalent to the relation 

r = K + AKr, (18) 
The imaginary part of this equation is 

(ajaA)o(E, A) = -'1I"(,pHI V I,pH)' 

(26) 

(27) 

the Fredholm coefficients obey the recursion relation
2 

In this result, there is implied a sum (partial trace) 

D" = d,.K + KD"_I' 

One therefore has the expansionS 

(19) over all quantum numbers other than energy (E) 
and angular momentum magnitude (l)8. 

,p(x) = f(x) + {~ X"u,,(x) / ~ 'A"d,,] , (20) 
IV. PROOF OF THEOREM (11) 

We first show the lemma: 

with do = 1, Uo = Kf, dl = -{uo} = -J(f); the D,,(x, s) = (-)" 
other terms are obtained by the convenient recursion 
procedure 

d,,+1 = - {Un} = - [J(U"_I) + d"J(J)] , (21) 

and 
Un+1 = Ku" + d,,+luo, (22) 

• On account of an incorrect application of proof by i~­
duction made in the last paragraph of that work, Ref. 1 fails 
to show that the equatIOns there-(22), (23), and (24)­
are in fact the determinantal solution. When augmented by 
the demonstration of the present work, the proof of Ref. 1 
can be easily completed. ., 

5 This expansion is closely related to (and IS essentIally 
implied by) Eq. (22) of Ref. 1. The comments associated 
with our Eqs. (12) and (13) apply here as well. 

x J ... J A,,(x, s; tl , •• , , t,,) dtl ••• dt", (28) 

tlS,.S···St. ---
6 For 1 = 0, see R. Jost and A. Pais, Phys. Rev. 82, 840 

(1951). For generall, see R. G. Newton, J. Math. Phys. 1, 
319 (1960). 

7 See, for example, M. Gell-Mann and M. L. Goldberger, 
Phys. Rev. 91, 398 (1953). 

8 This result could also have been derived from the re­
lation connecting, for a system with closely-spaced but dis­
crete energy levels, the phase shift with the energy s~t 
[J. Schwinger, Phys. Rev. 93, 615 (1954); B. S. DeWItt, 
ibid. 103, 1565 (1956); M. Baker, Ann. Phys. (N. Y.) 4, 271 
(1958).]: 

llE = - ... -1 aCE) dE. 
One differentiates with respect to X. 
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and 

x J ... J A..(to, to; t11 '" , t,.) dto dtl '" dt", 

(29) 
where 

J ... J dt} ... dt" 

I
b 1'· 1" 1'· s " dt,. .. dt"-l'" .. dt, " dt l • 

From the definition (10) of ~'" we note that inter­
changing any two of the variables 

8, tI , ••• , ttl (30) 

results in simultaneously interchanging two rows 
and two columns, leaving the determinant un­
changed. So ~,,(x, 8; tl , ••• , t,,) is invariant under 
any permutation of the variables (30). Utilizing this 
invariance, one can easily prove (28) by induction, 
or we can proceed as follows: Let S be the integral 
of ~" over the n-dimensional volume contained in 
the cube a ~ t/ ~ b, i = 1, '" , n, and Sp be the 
integral over the subvolume of this cube that 
satisfies the further restriction 

where (31) is a permutation of tl ~ t2 ~ 
Clearly 

S = L: S,,' 
p 

(31) 

~ t". 

(32) 

where the sum is over all n! permutations (31). 
Equation (28) follows from the definition (8) upon 
noting the invariance fo the integral to permutations 
(31), so that each of the terms Sp are equal. The 

demonstration of Eq. (29) follows from the defini­
tion (9) in an entirely similar manner. 

Using the Green's function property (2), Eq. (28) 
yields (8 = to), 

{D .. !} = (-yo t dtot(to) J ... J dtl ... dt" 

VCto)g(to) V(tl )g(t1) 

X K(tl! to) K(t}, t1) 

V(t .. )g(t .. ) 

K(tl' tn) 

K(t .. , tn) 

(33) 

Now, when to ~ t l , the first two lines in the deter­
minant become 

V(to)g(to) V(tl)O(t l) V(t .. )g(t .. ) 

V(to)O(tO)tCtl) V(tI)g(t1)t(tl ) V (t .. )g( t .. }t( tl ), 

and, because of this proportionality, the determinant 
vanishes. Bringing t(to) into the determinant as a 
common factor of each of the elements in the first 
line, (33) thus becomes 

{D .. t} = (-yo J ... J dto dft '" dt,. 

K(to, to) K(to, tl ) 

X Kef l , to) K(tl' tl ) 

K(to, t,,) 

K(tl! t,,) (34) 

which, being just the negative of Eq. (29), completes 
the proof. 
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New formulas for the characters of irreducible representations of simple groups are presented. 
They y~eld the character .directly ~s a sum instead of a q~otient as does Weyl's formula. The pro­
cedure 18 purely geometncal and 18 based on the propertIes of the regular lattice associated with 
every simple group in the "global" theory of Lie groups due to Hopf and Stiefel. 

I. INTRODUCTION 

T HE conjectured global symmetries brought Lie 
groups again into the center of interest of 

theoretical physics. Nevertheless, to many physicists 
the mathematical questions associated with this 
seem still somewhat esoteric. This is partly due to 
the fact that the mathematical literature on Lie 
groups is focused on fundamental theorems rather 
than on detailed properties which the physicist 
needs. For instance, it is not easy to get a general 
view over the different representations of a particular 
group. 

What makes the theory of representations richer 
and more complicated in the general than in the 
special case SU2 = 0 3 with which every physicist is 
so well acquainted, is the appearance of "multiple 
weights." Whereas within a particular representation 
of SU2 all eigenvalues of Lz are simple, the analogous 
statements for groups of rank 2:: 2 are not true. 
Thus the determination of the "multiplicities" of 
the weights is a central problem to which this 
investigation is devoted. 

An irreducible representation of a Lie group is 
completely determined, apart from equivalence, by 
its character, and the latter is given by the well­
known formula obtained by WeyP for (simple) 
classical groups: 

xeD) = X(D)/ A, (1) 

xeD) is the character of the representation D; the 
two expressions X and A are homogeneous alternating 
sums of exponentials and may be obtained without 
great difficulty by using the prescriptions stated 
below. From this formula one easily derives the 
character of any particular element of the group. 
But if one wants to know the character in an explicit 
form, in particular if one wants to obtain the mul­
tiplicity of every weight, it is indispensable to carry 
out the division explicitly. The division of a poly-

1 H. Weyl, Math. Z. 23, 271 (1925); 24, 328, 377, 789 
(1926). [In Selecta (Birkhiiuser, Basel, 1956)]. 

nomial of several variables by another one, however, 
is an extremely tedious affair and, if the dimension 
of the representation is sufficiently large, virtually 
impossible. 

Another method is based on a theorem due to 
Cartan,2 which says that every irreducible rep­
resentation is completely characterized by its highest 
weight which is simple, and that it may be obtained 
as the highest weight of a direct product of two 
representations, provided the 1 "fundamental" rep­
resentations of the group are known (l denotes the 
rank of the group, cf. below). This method is very 
simple indeed, if used in a purely geometric way, 
but it offers the disadvantage that in order to obtain 
the character of a certain representation, one pre­
viously has to compute a good many representations 
of a lower dimension. 

For this reason, it seems useful to have a formula 
which presents the character of any representation 
in such a way that the multiplicities could be 
directly accessible. 

Weyl's formula (1) and all the work derived from 
it are based on the infinitesimal method explained, 
e.g., in Racah's Princeton Lectures. 3 There one 
considers the Lie algebra of the group and constructs 
its representations using the well-known theorems 
of WeyP and Cartan.2 The "weights" appear as the 
solutions of eigenvalue equations. 

But there exists another method, the so-called 
"global method" due to Hopf,4 and extended by 
Stiefel5 to the theory of representations. There the 
weights are the terms of the character of the rep­
resentation; the latter is given yet by formula (1), 
but in a completely different approach: it is now 
derived from the properties of the regular lattice 

2 E. Cartan, These, Paris, 1894; Bull. Soc. Math. 41, 53 
(1913); Ann. Math. 4, 209 (1929). [In Oeuvres Completes 
(Gauthier-Villars, Paris, 1952), Vol. 1.] 

3 G. Racah, "Group Theory and Spectroscopy," in Prince­
ton Lecture Notes, CERN reprint, 61-8. 

4 H. Hopf, Comm. Math. Helv. 13, 119 (1940-1941)' 15 
59 (1942-1943). ' , 

6 E. Stiefel, Comm. Math. Helv. 14, 350 (1941-1942)' 
17, 165 (1944-1945). ' 

1226 
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associated with every semisimple Lie group (cf. 
below, Sec. III B). This permits the use of an 
elementary geometrical calculus through which the 
theory becomes much more accessible and trans­
parent. The two methods are in fact complementary 
and their comparison throws much light into the 
structure of Lie groups. 

Moreover, the use of the Hopf-8tiefel method 
enables us to solve the problem stated before with 
elementary, i.e., essentially geometrical tools; we 
obtain a new formula, valid for any representation 
of any semisimple Lie group, which yields the 
character as a multiple sum rather than a quotient. 
The procedure described by the formula is entirely 
geometrical and deeply reflects the structure of the 
group; in that frame the multiplicities of the weights 
acquire a natural and simple significance and are 
readily obtained with the whole weight diagram. 

In order to make the article reasonably self­
contained, an outline of Hopf's and Stiefel's theory 
is given in Sec. II. (cf. also Ref. 6). 

After having defined the notation in Sec. III A 
and having explained the geometric tools in Sec. 
IIIB, we shall compute the fundamental expression 
I/.:l in Sec. III C. This computation is done in 
the form of a geometric construction in the Cartan­
Stiefel diagram r, which provides a logarithmic 
calculus. But at this point we shall transgress the 
frame of Cartan's and Stiefel's theory for a short 
while and work in a m- rather than an l-dimensional 
space. (2m is the number of roots ~ 0, l the rank 
of the group, m ;?: l, cf. Sec. II). It is the step 
from Em back to EI which essentially yields the 
multiplicities of the weights. In Sec. III D we show 
how through multiplication with the "charac­
teristic", I/.:l is cut back such that only a finite 
expression, namely the character, remains. In Sec. 
III E finally we shall justify the use of the divergent 
series I/.:l. 

In a forthcoming paper, the procedure proved here 
for all semisimple groups will be carried through 
in detail for the classical groups AI, B I, C/, D I , 

and G2 • 

n. SURVEY OF HOPF'S THEORY OF 
COMPACT LIE GROUPS 

In the following, we work always within the frame 
of the global theory of compact (connected) groups 
as developed by Hopf.4 This form of the theory is 

8 D. Speiser, Lecture notes, Istanbul Summer School in 
Theoretical Physics (Gordon and Breach, New York, to be 
published). 

particularly well suited for the study of representa­
tions as was shown by Stiefe1.5

•
6 

An Abelian, connected, compact group is called 
a toroid (denoted by T). One proves that every 
toroid is the direct product of several groups O2 

(rotations in a 2-dimensional Euclidean plane E 2 ). 

A toroid therefore is completely characterized by 
its dimension. 

A toroid which is a subgroup of a Lie group G, 
but is not a subgroup of a toroid of a higher dimen­
sion, is called maximal toroid of G. The fundamental 
theorem of Hopf says, that every element of a 
compact group is contained in (at least) one maximal 
toroid. 

Let T and T' be two maximal toroids of a group 
G, then an element g E G exists such that g-lTg = T'. 
In other words, two maximal toroids are conjugated. 
This theorem justifies the selection of one particular 
maximal toroid as a tool for studying the group 
and shows that its dimension is an invariant, called 
the rank of the group. From this theorem follows 
that every representative of a compact group can 
be diagonalized. 

If an element of a maximal toroid does not belong 
to any other maximal toroid, it is called regular, 
otherwise singular. 

There exists a homeomorphism of a neighborhood 
of the identity Vee) into a neighborhood iT of a 
point 0 of a n-dimensional Euclidean space En. 
By choosing 0 as the origin of a Cartesian coordinate 
system, one introduces canonical coordinates into the 
neighborhood Vee). In particular, the intersection 
V T of the neighborhood Vee) and the maximal 
toroid T is mapped into an open set iTT C iT of 
dimension l. 

First iTT may be continued into the image of T; 
then, furthermore, into the image of the universal 
covering group of T, isomorphic to an l-dimensional 
Euclidean space E/. Thus every element of T will 
be represented by an infinite point lattice in E I ; in 
particular, the image of the unit element is a lattice ge. 

The image of the singular elements of T consists 
of m families of (l - I)-dimensional hyperplanes. 
Here m = !en - l), n is the order of the group, 
l its rank. One proves that no two singular hyper­
planes may coincide. The set of all singular hyper­
planes, i.e., the union of all singular points, is called 
the diagram r of Cartan and Stiefel. The points 
of maximal intersection, i.e., the points which belong 
to one hyperplane of every set, represent the center 
of G. 

The essential property of r is the following: 
r remains invariant under a reflection in any of 
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the hyperplanes of which it is composed. Thus r 
possesses very special symmetry properties. 

If G is semisimple, its center is a discrete group. 
Therefore, its image in E, is a point lattice gO, 
generated by 1 basis vectors. This lattice gO contains 
gO as a sublattice. 

Consider the origin of g" and ge and all points 
into which it can be transformed through a series 
of successive reflections in hyperplanes of r. The 
set of these points is a sublattice 7 of gO. Thus 
one has: 

7 C gO ego. 

The finite discrete group, generated by the reflec­
tions in the hyperplanes passing through the origin 
of gO, was called by Weyl the group S. S is the crystal­
class of gO. The fundamental domains D, of S are 
infinite pyramids whose corners are at the origin 
of gO. D, has I edges. 

The 2m vectors, orthogonal to the m hyperplanes 
passing through the origin of gO and twice as long 
as the distance to the next parallel hyperplane, are 
the roots of Cartan. Thus the set of roots, the root 
diagram also is invariant under the transformations 
of S. Whence follows immediately 

2(A, IN(A, A) = n = integer, 

where A, f.J. are two roots and (A, f.J.) their scalar 
product. This relation is the source of van der 
Waerden's7 classification of all simple groups, which 
was greatly simplified by Coxeter and Dynkin 
(cf. Ref. 8). (In the framework of the infinitesimal 
theory, the roots are the nonzero eigenvectors of 
the characteristic equation of the group. This equa­
tion is constructed in terms of the infinitesimal 
generators of the group (cf. Refs. 2 and 3). 

The diagram r of Cartan and Stiefel does not 
characterize a group completely, but rather the 
family of all groups which are locally isomorphic. 
Global properties are determined by the lattice gO, 
or better by the way g" contains 'Y and is itself 
contained in gO. 

For instance g" = gO means that e is the only 
element of the center of the group. This charac­
terizes the adjoint group GA' On the other hand, 
g" = 7 characterizes the universal covering group. 
(For a proof of this statement cf. Ref. 8). In between 
these two extreme cases there may be room for 
intermediate possibilities. 

As an example, take the unimodular unitary group 

7 B. L. van der Waerden, Math. Zeit. 37, 446 (1933). 
8 L. S. Pontrjagin, Topologische Gruppen (Teubner, Leip­

zig, 1957), 2nd ed. 

SU,., whose center C is the cyclic group Z,.. The 
same diagram is obtained for the following groups: 

-SU,. itself (universal covering group): 

gO = 7, C = Z .. i 

-SU .. /Z" where Z" is a proper subgroup of Z .. : 
(i.e., p divides n) 

7 C g" egO, 

-SU .. /Z" (adjoint group): 

C = Z .. /Z" = Zn/,,; 

g" = gO, C = e. 

For n = 3, one has only the two extreme cases 
SUa and SUa/Za, but for n = 4, there is one more 
possibility, namely SU4/Z2 (which is locally iso­
morphic to S06, the proper orthogonal group in 
6 dimensions). 

Note. A consequence of this situation is the 
classification of irreducible representations into 
classes which form a group isomorphic to the center. 
This will be studied in a forthcoming paper. 

m. THE CONSTRUCTION OF THE CHARACTERS 
OF IRREDUCIBLE REPRESENTATIONS 

A. Notations 

Consider the space E, and the lattice gO contained 
in it. Both are divided into the fundamental domains 
D, of the group S. These are infinite pyramids 
limited by singular hyperplanes of T. By the opera­
tions of the group S they are permuted among 
themselves. S acts transitively on the D" i.e., for 
every pair D" Dk there exists a s E S such that 
D, = SDk. Moreover, no D, remains invariant under 
any s E S, s ¢ e: 

1. Definitions 

Introducing an orthonormal system { ej } into 
E, : V = x'e" i = 1, 2, '" I, we say2.3: 

A vector V is positive if its first nonvanishing 
component is positive i 

The vector V is greater than W if V - W is 
positive; 

The vectors s, V which are obtained by apply­
ing the operations 8, of the group S to a vector 
V are called equivalent to V; 

A vector greater than all its equivalents, is 
called dominant. 

The 2m roots in particular fall into either of two 
classes: m roots are positive (denoted a,), m roots 
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are negative (denoted fJi, fJi = -ai)' The two sets 
are separated by an (l - I)-dimensional hyperplane. 

2. The Vector Ro 
Let Ro be half the sum of all positive roots, 

m 

Ro = ~ L: ai, 
.. -I 

and call Do the fundamental domain to which Ro 
belongs. 

Let us now introduce an affine coordinate system 
with basic vectors PI .. , PI E gO, such that every 
V E gO has the form 

V = L: PiPi with integers Pi , , 
and such that Do is defined by the inequalities 

Pi ~ 0 for every i = 1 ... l, 

and for every V E Do. (2) 

For such a system Weyl has proved 1 : 

Ro = ~ L: a, = PI + P 2 + '" PI' (3) 

This shows that Ro lies inside Do and not on its 
boundary. 

3. Outermost or Elementary Roots 
Let ITo be the hyperplane orthogonal to Ro, passing 

through the origin. ITo separates positive and negative 
roots and none of either set lies on it. For if a , 
root would lie on ITo, the hyperplane orthogonal 
to it would contain Ro, and this is excluded by (3). 
In other words, the bundle of positive roots is 
convex, and so is the bundle of negative roots. 

The 1 surfaces of Do are the singular hyperplanes 
iJ, closest to Ro. The corresponding positive roots 
are therefore the roots closest to ITo, i.e., the outer­
most roots of the bundle of positive roots. Since 
the outermost positive roots cannot be expressed 
as a sum of (2 or several) positive roots, they are 
also called elementary. 

One easily shows (Ref. 8, Satz 113), that elemen­
tary roots are linearly independent whence there 
can be no elementary root besides the 1 outermost 
ones. 

Denoting the outermost roots a l ••• ai, one may 
write 

4· Construction of the Coordinate System Pi 

One may proceed along the following line: the 
singular hyperplanes passing through the origin obey 
equations iJ,(Xj) = 0, i = 1 '" m, which follows 
from the expressions for the roots ai(ej). They are 
well-known for all simple groups.2.3.7 The 1 hyper­
planes closest to Ro are the surfaces of Do: Pi = 0, 
by construction. Thus, 

whence 
P, = A,iJ,(Xj)' 

The arbitrary constants Ai must be determined by 
(3) in both coordinate systems. One then gets 
Pi = p,(x;) whence by inversion, 

Xj = X/(Pi)' (5) 

B. Formulation of the Problem and 
Geometrical Interpretation 

1. Weyl's Formula 

WeyP showed that the character of an irreducible 
representation of a semisimple group may be written 
in the following form: 

X = X/11 (6) 
where 

x = X(Ko) = L: 5.e,(,Ko
.<p), 

.ES 

Ko E 0° (\ Do. (7) 

The summation in this formula runs over all elements 
of Sand 5, = ±1, according to whether s is a 
proper (+ 1) or improper (-1) rotation. The ipk 

are the group parameters introduced as coordinates 
into the toroid (0 $ ipk $ 211", ipi = 0 or 211" represents 
the unit element of T). X is called the characteristic9 

of the representation. 
As a function of the l, JI1J2 is the Jacobian in 

the group integral, if the domain of integration is 
transformed from G to T with the help of the con­
jugation theorem of Sec. 2. This leads to the follow­
ing form1o for 11: 

11 = IT {e1iCa,.9') - e-iiCa ,.9')} 
,-1 .. 

= ei
(./io.9') II {1 - e'(P,,9')}, (8) 

&-1 1 ~ i ~ m - l, 

1 ~ j, k ~ m, 

and likewise for the negative roots: 

(4a) where the product is extended to the positive roots. 

fJl+i = fJ/ + fJ., 1 ~ i ~ m - l, 

1 ~ j, k·~ m. 
(4b) 

I The nomenclature is not uniform in the literature. Here 
we follow Stiefel, who derived formula (6) in the frame of 
Hopf's global theory,5 whereas Weyl had used the infinitesi­
mal method. 

10 We are indebted to Professor R. Brout and Professor 
Englert (University of Brussels) for having suggested to use 
this expression for A. 
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On the other hand, .1. must be also the characteristic 
of the unit representation; indeed one has 

.1. = X(Ro) = L o,e'(SR •. 'P). (9) 
.ES 

This expression contains only rJ terms (rJ order 
of S), whereas the expression (8) contains 2m terms 
and 2m > rJ for all simple groups: the additional 
terms cancel two by two, due to relations (4) 
between the roots. 

With respect to S, X and .1. are clearly alternating 
functions, X an automorphic function: 

(WD); the WD is now a polyhedron invariant under 
the operations of S. 

The characteristic X(Ko) is represented by the 
points sKo, with multiplicities 0" which form a 
convex polyhedron, since all the vectors sKo have 
the same length. Two adjacent corners are symmetric 
with respect to a hyperplane if;, therefore the edge 
joining them is parallel to the corresponding root ai' 

For .1., this can be made somewhat more precise: 
every edge has the same length as the root parallel 
to it. 

sX = o,X, 

s E S. 

Proof: One obtains saRO from Ro(s. E Ro) by 
substituting for some of the a/s the corresponding 

(10) f3i = -ai, while the other a/s permute among 
themselves: 

sx = x, 
The fundamental theorem concerning irreducible 
representations then says: 

There is a one-to-one correspondence between the 
irreducible representations of G and the vectors 
Ko E Do (strictly inside Do, not on its boundary) 
with integer p components, i.e., lying on ge. Every 
such lattice vector Ko defines the characteristic 
X(Ko) of an irreducible representation of G, and 
every characteristic can be obtained in this way. 

The character has the following form: 

" ei(M.'P) X = .L...." 'YM , (11) 
M 

where 'Y M is a positive integer and M are vectors 
from ge, such that the relation (10) is satisfied; 
these are the weights of the representation, 'Y M is 
the multiplicity of M. These weights, unlike the 
K's, associated with X, do not all have the same 
length, since X is not homogeneous. From (6), (7), 
and (9), one sees that the highest weight of the 
representation is the vector Lo = Ko - Ro. Already 
Cartan had proved that the highest weight of every 
irreducible representation is simple, i.e., 'Y L. = 1, 
and completely determines the representation. 

We extend the notion of multiplicity in two direc­
tions: the multiplicity is simply a function defined 
on gO (i.e., on all lattice points or, equivalently, 
lattice vectors), whose range is the set of all integers, 
positive and negative. 

2. Geometrical Interpretation 

The term ei(P.'I') is geometrically represented in 
T by the point (or vector) P E gO. Thus the character 
is represented by the set of points M E gO of (8), 
with multiplicities 'Y M. They form the weight diagram 

Thus, 

s.Ro - Ro = -ak+! ... - am = f3k+l + ... + 13m. 

If Di = s,Do is a fundamental domain adjacent 
to Do, then by definition, siRo - Ro = nf3;, where 
fl. is an elementary negative root; thus n = 1. This 
proves the assertion. 

Our problem is the following one: given XeD) 
and .1., compute the explicit form of xeD), specially 
the 'Y M'S; in other words, find the weight diagrams 
from the polyhedrons X and .1.. 

The method used here consists first in multiplying 
X by 1/.1. instead of dividing X by .1., and second 
in carrying out all the operations geometrically. 
In order to do so, 1/.1. must be computed as an 
infinite sum. 

C. Construction of 1/4. 

1. Iterative Procedure 

Formula (9) reads 

.1. = L o,ei(·R •. 'P) 
S 

= e,(R •. 'P) [1 - L' (- o.)ei(·R.-R •. 'P)J, 
S 

(L' represents summation over all s different from 
the identity). This can be written 

with 
.1. = ei(R··'P)(1 - Z) 

Z = L' (- o.)ei(·R.-R •. ,,) , 
B 

whence, formally, 

1/.1. = e-HR 
.... l l/(1 - Z) 

(12) 
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(13) 

Clearly, this potential series converges only if 
IZI < 1, which in general is not the case; therefore 
we shall consider it formally and justify our proced­
ure afterwards. In fact, expression (13) should not 
be looked upon as a series to be summed up, but 
rather as a function defined on gO, by interpreting 
it in the same way as the character (11): in a term 
",{" exp i(P, cp), the multiplicity ",{" at the point P 
is the value of the function 1/ ~ at the point P. 
Divergence of the sum means only that "'{ increases 
indefinitely when one departs further and further 
from the origin. But this, as we shall show, is of no 
importance since for computing the character; in 
fact only values of 1/ ~ lying in a bounded domain 
of gO are used. A detailed rigorous justification of 
the procedure will be given at the end (Sec. III E). 

Remark: In (13), 1/ ~ no longer displays the S 
symmetry explicitly. This is due to the distinction 
of the particular term exp i(Ro, cp). Clearly, any 
other of the a terms could have been taken in front 
of the bracket as well: there are in fact a different, 
but equivalent ways to construct 1/~, and the 
operations of S simply exchange them pairwise. 

It remains to express (13) in geometric language: 
(1 - Z) is the same polyhedron as ~, shifted by the 
vector - Ro. This translation shifts the corner Ro 
into the origin. Z is obtained from (1 - Z) by 
discarding the origin and reversing the signs at all 
other corners. Figure 1 shows the three polygonals 
~, (1 - Z), and Z for the case of A 2 • Thus, we 
may consider Z as given by Z ·1, i.e., the result 
of the application of the polyhedron Z to the origin. 
In the same way, Z2 is defined as Z ·Z, i.e., the 
superposition of the figures obtained when one 
applies the Z polyhedron to everyone of its own 
corners; and in general Z" is defined as Z· Z,,-l . 
Figure 2 shows the construction of Z2 in the case A 2. 

The computation of the series (13) can be carried 
out step by step. Indeed consider in gO the hyper­
plane 0'1, containing the l corners adjacent to the 

-G--
+ -

FIG. 1. The three polygonals fl., 1 - Z, and Z in the case 
A 2 (l = 2). The third one shows the family of hyperplanes 
{ud (straight lines in this case). 

-z z 

FIG. 2. Explicit construction of Z2 = Z· Z in the case A 2. 

origin. It defines a family {(ll of equidistant parallel 
hyperplanes. Let 0'0 be the neighbor of Ul passing 
through the origin, 0'2 the neighbor on the opposite 
side, 0'3 the neighbor of 0'2 ••• • One sees then 
immediately that Z has corners only on the o'/s, 
with i ~ 1, Z2 on the u/s with i ~ 2, and in general, 
Zk on the u /s with i ~ k. Thus the partial sum 

Lk = 1 + Z + Z2 + '" + Zk 

already yields the final multiplicities of all the 
relevant points of 0'0, 0'1, '" , O'k. This is illustrated 
in Figs. 1 and 2 for the case A 2 • 

In this way, one can calculate the series (13) as 
far as one wants for every group separately; for 
groups of rank :s; 2, this can be done graphically, 
for groups of rank> 2, one must use the coordinates 
of the different corners. 

This method is simple, as the multiplication of 
the Zk is reduced to vector addition, i.e., geometric 
superposition in gO. (This provides so to speak a 
logarithmic calculus!) But for bigger groups, the 
computation must be pushed rather far in order 
that one may be able to discover (empirically) the 
law which governs 1/~. It is therefore necessary 
to have a more direct method, valid for all simple 
groups, relying only on the structure of ~. 

2. Direct Procedure, Solution in the Space Em 
From now on we use a shorter notation. We 

introduce the symbol 

[P] == ei(P.<P). 

It has the obvious properties 

[P][Q] = [P + Q], [p]a = CaP]. 

We start then from formula (8), which can be written 
m 

~ = [RoJ II {I - [,8;]). (14) 
i=-] 

Let us forget for a while the relations (4), and 
consider the m negative roots /3; as independent: 
they span an m-dimensional Euclidean space Em; 
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I 
I 

+ I_ 
I 
I 
I 

h p~~L ____ _ 
FIG. 3. The cube .:l/[Rol in the 

case A 2• 

" ... 

in this space, .o:1/[Ro] is now the hypercube defined 
by the m vectors 13.: one corner is at the origin, 
with multiplicity + 1, the other ones have alterna­
tively multiplicity -1 and + 1, starting from the 
origin. Figure 3 shows this figure in the case A2 
(m = 3). 

We will now repeat on the expression (14) the 
manipulation performed in CI of this Section on 
(12) ; one has formally 

~ = [Ror
l n {I _1 [{3;J} 

[-RoJ n {~ [{3;t'} 

[-RoJ n {~ [k;f3.J} 

= [-RoJ f ... f {iI [k.f3.J} 
k1-O km-O i-I 

= [-RoJ f ... f [t k;f3.]. (15) 
k1-O km"",O i-I 

In the final result (15), the bracket [E~-1 k;f3.J 
clearly represents an arbitrary point of the lattice 
constructed on 131 ... 13m, with positive, integer 
coefficients. The sum of this expression with respect 
to kll k2' "', km from ° to ro represents all points 
of one of the 2m "octants" of this lattice in Em. 
Each of them has multiplicity + 1. 1/.0:1 is the same 
figure translated by the vector - Ro. 

This result may be expressed in a simpler way 
if we define the operation "summation along a 
vector". Consider a lattice with basic vectors 
VI ... Vp , a point P of this lattice and a figure 
F(P) attached to this point P: we shall call "sum 
of F(P) along Vi" the figure obtained by super­
position of all figures congruent to F modulo (+ Vi). 
In a formula, 

m 

E F(P) == E F(mV" + P). 
v.. m-O 

~U I I I· .. 
VI 

FIG. 4. The figure 
:Ev. F(O), where F(O) 
is the segment [(0,0)­
(1,0)]. 

The summation sign on the rhs denotes the super­
position just explained. 

For instance, let F(P) be the origin and VI the 
vector with coordinates (1,0,0, ... ), then Ev. [0] 
is the set of all the points (m, 0, 0,' .. ), m =0, 1,2,' . '. 

As another example (Fig. 4), take p = 2, let 
P be the origin and F(O) the segment [(0, 0)-(1, 0)]; 
Ev. F(O) then represents the set of all the segments 
[(0, m) - (1, m)], m = 0, 1, 2 .... 

With the help of this notation, (15) may be 
written in compact form, 

1 
.0:1 

3. Solution in the Space E, 

(16) 

This gives the solution in Em, where the problem 
of the multiplicities is trivial. But it remains to 
step back into Ed As we have seen, this amounts 
to take into account relations (4) between the roots; 
the effect thereof is that in (14) some terms will 
cancel pairwise. This means that the corresponding 
corners of the hypercube with opposite multiplicities 
coincide. In other words, this operation defines an 
affine (singular) correspondence between Em and 
E, which preserves coincidence relations: Em is 
projected onto E

" 
the hypercube in Em onto the 

.0:1 polyhedron in E, (see Fig. 5 for an example) 
and the 1/.0:1 of Em, as defined by (15) or (16), 
onto the 1/.0:1 of E ,. Since these two formulas 
express only coincidence properties which still hold 
after this projection, they will thus remain valid 
in E ,. But since the projection is singular (from a 
m-dimensional onto an l-dimensional space), there 
will be new coincidences; they will cause some 
multiplicities becoming greater than 1. We can now 
write our result in E, under the following form, 
if we use the very definition of Ro: 

or 

(17) 

(18) 

FIG. 5. In the case A 2(l = 2, 
m = 3), the cube of Ea is pro­
jected onto the hexagon .:l of 
E 2, when one takes into ac­
count the relation PI'" Pl + P 2. 
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From these formulas, one sees immediately: 

1/..:1 is an infinite pyramid with 1 surfaces and 
its corner is at -Ro; 

Its surfaces are parallel to the surfaces of ..:1 
which intersect at Ro; 

At all points of gO on or inside the pyramid the 
multiplicity of 1/..:1 is greater or equal to 1, 
since it is equal to the number of points of 
the 1/..:1 of E .. which coincide after the projec­
tion on E" i.e., the number of different com­
binations k1 ... k". which correspond to this 
point; 

In particular, the multiplicity is equal to 1 
at all points on the edges of the pyramid; they 
correspond to the set of values 

kj = m, positive integer, f.I Itt 
fJj = e emen ary roo , 

k,=O, i;6j, (j=1,2,···l); 

On each surface of 1/..:1 [(l - I)-dimensional 
hyperplanel, the mUltiplicity depends only 
upon the angles between the elementary roots 
which span it. 

D. Construction of the Characters 

1. General F ormula8 

Now that the expression for 1/..:1 is under control, 
we may easily construct the characters of all irredu­
cible representations. 

Let a characteristic be given, 

X(Ko) = 2: 5.ei(·Ko.'P) = 2: 5.[8Ko]. 
s s 

The corresponding character then is 

1 
X = X(Ko) ~ 

= i~ ••• ito {X(Ko>[ ~ (k, + !)(3,]} 

= t .. · t {2: 5.[:t (k, + !)(3, + 8Ko]} 
-':.-0 1: .. -0 8 i-I 

= t .. · t {2: 5.[:t k,(3, + 8Ko - Ro]} , 
1::.-0 1::.-0 8 i-I 

(19) 

x = :E ... :E {X(Ko)[ -Ro]}' (20) 
fl. fl .. 

The expression between curly brackets in (20) is the 
character translated by the vector (-Ro). 

2. Geometric Interpretation 
From this form, one recognizes immediately that 

x contains only a finite number of terms, or better, 

... +1 +1 +1 ~1 +1 +1 +1 +' +1 

+{ 

i i i i , 
'(Ttl 

... -1 -) -,1 -1 
(smTtl 

: +1 +1 +1 +1 +) 
i i i i 

FIG. 6. Construction of :E~. [-Rol as explained in the text. 

only a finite number of terms of 1/..:1 contribute to 
x. Indeed, 

2:" .. [-Rol is a "ray" of the lattice gO parallel to 
(3"" which begins at the point (-Ro). All lattice 
points which it carries, have multiplicity + 1. But 
to every corner [T,l of X corresponds a second one 
[8 .. T.l symmetric to T. with respect to t1 .. , therefore 
bearing the opposite sign. These two corners there­
fore yield identical rays in the product CIJ but with 
opposite signs. One of them is translated with respect 
to the other by a finite amount. Thus their super­
position yields a finite segment parallel to 13m all 
points of which have multiplicity +1. (Fig. 6). 
Thus CIJ consists of to' finite similar segments (0' = 
order of S). If the (m - 1) other summations along 
(31 ... (3 .. -1 are carried out, these segments are 
shifted such that they remain parallel to their 
original position. But they are never shifted in the 
direction (3"., and therefore the diameter of the set 
of points of gO in the direction of (3 .. is finite. To put 
it exactly: every line parallel to (3.. contains only 
a finite number of points. However, the order of 
summation in (20) is just as arbitrary as in (18). 
Therefore what was said with respect to (3 .. is also 
valid for the other {3,'s, whence follows that the 
diameter of X is finite in the direction of all (3,'s. 
Thus it contains only a finite number of points, 
i.e., only a finite number of points of 1/..:1 really 
contribute to x. 

3. Simplification of the Formulas 

Let us first note the following. Formulas (19) and 
(20) yield the entire character. But much less is 
needed; it is quite enough to know the part xo of X 

which is contained in Do (inside and on the bound­
ary); the other parts then will be obtained through 
the operations of S, 

Xo = t .. · t {:E 5.[:t k,{1, + 8Ko - RoJ} , 
k 1 -O 1:.-0 13 i-I 

(21) 
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with the condition 
.. 
L k;fl, + 8Ko - Ro E Do, 
i-l 

and 
x = Ls 8Xo· 

In the form (20), Xo is obtained if one restricts 
oneself to the points of Do i these may be obtained 
by starting from X (Ko)[ -RoJ and summing up along 
everyone of the {3/s, as usual. 

Note also: The same remark which was made 
for 1/ A is valid also for x. Formulas (19) and (20) 
are not manifestly symmetrical with respect to S. 
This results from having designated m arbitrary 
(adjacent) roots as negative ones, i.e., from the 
particular orientation of the orthogonal coordinate 
system with respect to gO, implied by this choice. 

The symmetry of the root diagram would have 
permitted to choose any other set of adjacent roots, 
i.e., roots which are all on the same side of an 
arbitrary (l - I)-dimensional hyperplane passing 
through the origin. 

If 
8; E S, 

one obtains 

x; = L ... L I X(Ko) [ -R&J I, 
flil f3i m 

with 

= 8;X = x· 

E. Justification of the Procedure 

In our direct procedure, we used the relation 

1 m { 1 } ~ = [-RoJ n 1 - [(3;J . 

We consider now the jth factor and expand it 
formally: 

1 '" L ei(ki~i.",). 

kj=O 

1 
1 - [{3;J 

If we put Z; = [{3;J = ei(~i''''>' we have IZ;I = 1 
and the series obviously diverges. 

But if we substitute for <p, <p' = <p + # (i.e., 
<p'k = <pk + ivl , k = 1 ... l), with the condition 
({3;, 1/1) > 0, we have IZ~I = lei(~;·")e-(~;·If)1 = 
e-(/l/·If) < 1 and the series L;';-o Z,k; converges 
absolutely. 

We choose now a 1/1 such that for every j = 1 ... m, 
one has 

Cf3;, 1/1) > O. (22) 

This is always possible, since all vectors {3; are on 
the same side of a hyperplane ITo passing through 
the origin: every vector 1/1 on the same side of ITo 
as the {3;'s will satisfy the requirement. We have 
then, for every j = 1 ... m, an absolutely convergent 
expansion: 

1 ~ (Z,)k' 1 _ Z~ = £..... ; '. 
J kj-O 

As a consequence, we may now take the product 
of these m expansions and arbitrarily change the 
order of the summations, as we did above: 

D 1 ~ Z; = D {~ (ZD
k

;} 

'" '" L ... L Zjk, Z ,k .. 
m • 

k 1 =O km=O 

This will give us formulas (15)-(18), but expressed 
in <p' instead of <po 

We may write 1/ A = Al + R, where Al contains 
only the finite number of terms which contribute 
to X and R is the rest of the series. 

Thus: 
x = X(1/A) = XA I + XR 

= X' + Q. 

The function Q is analytic since it contains only 
exponentials. For every X belonging to the domain 
of El defined by (22), Q vanishes identically. There­
fore, if analytically continued, it vanishes identically 
everywhere, in particular also for 1/1 = 0, <p' = <p 

(which is a limit point of the domain in question). 
Thus, we have always and everywhere x' = Xi 

this justifies the use of the diverging series (15)-(18) 
for computing the character. 

This shows that the procedure which we called 
"direct" is in fact valid and so are the resulting 
formulas for x. The other procedure (the "iterative" 
one), is completely equivalent to the first one, so 
that no independent proof is needed. 
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The nonrelativistic Coulomb Green's function in momentum space is obtained in closed form by 
Fourier transforming the known expression for the coordinate-space Green's function. Also, an inte­
gral representation for the momentum-space Green's function is obtained which looks rather at­
tractive from the point of view of applications. 

I. INTRODUCTION 

I N a previous paper] the author has given an 
expression in closed form for the nonrelativistic 

Coulomb Green's function in coordinate space. The 
coordinate-space Green's function was defined there 
as the solution G(r2' r l , w) of the differential equation2 

tV: + (2kv)/r2 + k2}G(r2' r l , w) = (l3(r2 - r l ), 

k = (2mw/h)t, 1m (k) > 0; v = Ze2 m/47rkh2 
(1) 

subject to certain regularity conditions at the origin 
and at infinity. The quantity hw is any complex 
number not in the (discrete or continuous) eigen­
value spectrum of the Coulomb Hamiltonian. The 
Green's function G(r2' r il w) is analytic in the 
complex hw plane except for a branch cut along 
the positive real axis, 0 :::; hw < + <Xl, and except 
for simple poles at the Bohr energy levels, 

hw = - mZ2e4/2(47r)2 h2n2 n = 1 2 3 ... , , " . 
For applications, it would be desirable to know 

the Green's function in momentum space. This 
function is the Fourier transform in r] and r 2 of 
the coordinate-space Green's function: 

G(k2, k], w) 

- J d3
r2 f d~ -ilt •• r,Hlt,.r'G( ) 

- (27r)t (27r)t e r2, r1) w . (2) 

It satisfies the integral equation 

(k ) 
(l3(k2 - k l ) 

G 2, kl' W = k2 _ k~ 

2kv J d3k3 47r - e - k~ (27r)3 Ik2 _ k312 G(k3' kl' w), (3) 

which is just the momentum-space counterpart of 
Eq. (1). 

We here derive an expression in closed form 

* This research was supported in part by the U. S. Atomic 
Energy Commission. 

I Levere Hostler, J. Math. Phys. 5, 591 (1964). 
I Heaviside-Lorentz (= rationalized Gaussian) units are 

used. 

[Eq. (17) in conjunction with Eqs. (22), (23), (27), 
and (29)] for G(k2' kl' w). In the course of this 
derivation, we obtain an integral representation 
[Eq. (24)] for G(k2' kh w) which looks rather attrac­
tive from the point of view of applications. 

Note added in proof: Essentially the same integral 
representation has been obtained independently by 
S. Okubo and D. Feldman, Phys. Rev. 117, 292 
(1960). 

These results are derived from the integral repre­
sentation 

= ~ _._e__ dr _~__ eik(r.+r.)f 'k -n 1(1+) (r + l)i. 
87r sinh 7rV +00 ;arc(i±J) -0 r - 1 

X Io( -2ik(r j r2)f cos t8(r2 
- l)t), 

o < arc (k) < 7r, (4) 

for the coordinate-space Green's function given in 
Ref. 1 [Eq. (1.13)]. Here 8 is the angle between 
the vectors r 2 and r l , and 10 denotes the Bessel 
function of imaginary argument, as defined in 
Watson.3 The integration contour begins at r = + <Xl 

on the positive real axis, runs down the positive 
real axis to a point on the right of r = + 1, circles 
the point r = +1 in the positive (counterclockwise) 
sense, and then returns along the positive real axis 
to r = + <Xl. The phases of (r ± 1) are determined 
along the contour by continuity, their initial values 
at r = + <Xl being arc Cr ± 1) = O. 

The integral representation (4) has the merit of 
isolating the Z dependence of the integrand in the 
simple factor [(r + 1)/(r - 1)]i'. As regards the 
r 2 and r l dependence of the integrand, this is the same 
as we would have in the free-particle limit. Hence 
the integrand of (4) should be fairly easy to Fourier­
transform in r2 and r l, and upon taking this Fourier 
transform, we will obtain directly an integral rep­
resentation for the momentum-space Green's func-

3 G. N. Watson, Theory of Bessel Functions (Cambridge 
University Press, Cambridge, England, 1962), 2nd ed., p. 77. 
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tion G(k2' ki' w). The latter integral representation 
will clearly inherit from (4) the property of isolating 
the Z dependence of the integrand in the single 
factor [G- + 1)/(r - lW'. Our program is, then, 
to first Fourier-transform the integrand of (4). This 
will give the integral representation of the momen­
tum-space Green's function that we are looking for. 
This is done in Sec. II. We then find (Sec. III) 
that the parameter (t) integral can be performed 
in terms of hypergeometric functions, giving the 
desired closed-form expression for the momentum­
space Green's function. 

n. INTEGRAL REPRESENTATION FOR THE 
MOMENTUM-SPACE GREEN'S FUNCTION 

Proceeding with our program as outlined above, 
we write G(k2, ki' w) in the form 

1 10
+) (r + I)" G(kt, ki' w) = 2... dt --e - 1 + .. ;arc(t±l) -0 r - 1 

where 

D(k k w) = ik J d
3

r2 J ~ e- ik • ·r.+ik.·r, 
2, 1, 4?r (2'lIl/2 (271'")3/2 

(9) 

of the Bessel function. If we choose 

c > r2 Ikl 2 It2 
- II/1m (kr), (10) 

then the r 1 integration can be performed before 
the t integration. [Here we require the condition 
1m (kt) > 0, which follows from (7).] The r i integra­
tion can be worked out with the help of the following 
integral (assumed convergent): 

J d3re-Ar-B'r = 871'"A(A2 
- B.Bf2

, (11) 

and we find 

(12) 

The t integration contour in (12) can be closed 
on the left by an arc at infinity, and the t integral 

X eik (r,+r.Hlo[-2ik(r2r i )' cos !8(f - 1)']. (6) evaluated by the residue theorem. The only pole 
of the integrand of (12) is a second-order pole at 
t = tp • As a consequence of the inequality (10), 
this pole is found to lie inside the (now closed) 
integration contour. On evaluating the residue at 

In order to achieve convergence of the integral (6) 
for D(k2' kl) w), we choose the r integration contour 
such that, for all r values on the contour, both 
inequalities 

1m [k(r ± (t2 
- 1)')] > 0 (7) 

hold. Using the method of the appendix, it can be 
shown that the two inequalities (7) restrict the r 
integration contour to the interior of the region on 
the right of the right-hand branch of the hyperbola 

~/ cos2 a - r~/sin2 a = 1, 
(8) 

ri = Re W, r2 = 1m W, a = arc (k). 

The real part of the contour, as previously described, 
~II:eady lies in this region. In order to satisfy (7), 
It 18 only necessary to take the loop about the point 
r = + 1 sufficiently small as to also lie in this 
region. (The integration contour could still be 
continuously deformed in any way, so long as the 
process of deformation does not involve going out­
side the permitted region and does not involve 
passing over the point t = + 1.) 

The integral (6) can be evaluated by using the 
integral representation4 

'~hiB may be !lbtained from Eq. (8), p. 177 of Watson3 
by usmg the relatIOn (p. 77) Io(z) = J o(iz). 

the pole, (12) leads to 

k2(t2 
- 1) 

B = ~'k2 - ~'ki er2 _ k~ . 

(13) 

The r2 integration in (13) can be performed using 
(11) and the two formulas 

and 

J dSr re-Ar- Bor = -3271'"AB(A 2 
- B.B)-a, (14) 

obtained from (11) by differentiating with respect 
to the parameters A and B, respectively. We then 
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obtain the following expression for D(k2 , k t , w): 

(ik)3 
D(k2' kl' w) = -2 11" 

(k' - k~)W - k;)(3rZ 
- 1) + Ikz - kIll! kll(r4 - 1) . 

X [W - k~)W - k;) - Ik2 - k l 12 k2(r2 - 1)]3 
(15) 

Equation (15), when used in conjunction with 
Eq. (5), would give an integral representation for 
the momentum-space Green's function. Although 
this integral representation might be convenient for 
some applications, we prefer not to leave it in this 
form for the following reason. In the free-particle 
case the momentum-space Green's function is known 
to have the form o3(k2 - kl)(k' - k~)-I and is a 
distribution rather than an ordinary function. Now 
we will find that the momentum-space Green's 
function contains a distribution also in the Coulomb 
case, and we prefer to rewrite the integral representa­
tion for the Coulomb case so as to exhibit this 
distribution. To this end, we observe that D(k2 , kl} w) 
can be rewritten in the form 

D(k2, kl' w) 

(ik)3 1 d ( 2 ) d (2 1) 
= 211"2 (k' - k;)(k' - k~) dr r - 1 dr r -

1 
X (k2 

_ ki)(e - ki) - k2 Ik2 - k l 12 (t2 
- 1) 

(16) 

This identity "explains" the rather complicated 
structure of (15) and suggests that when we sub­
stitute into (5) for G(ka, kl' w) we should integrate 
by parts two times. Doing this, we obtain for 
G(k2' kl' w) 

G(k2, k l , w) = Go + G1 + 92' (17) 

where 

_ (t + 1)" (ik)3 
Go - t - 1 11"2 

X [W - k:)W - k~) - k2 Ik2 - k l 12 (f - 1)]2 r-.. ' 

. (t + 1)" (ik)3 
G1 = 'til t - 1 7 

(18) 

(f - 1) I 
X [(k2 

_ k:)(k2 
- ki) - k2 Ika - kIll! (f - 1)] r- .. ' 

(19) 

and 

2 1(1+) (t + I)" 
X 2... dt--

e - 1 +"':arc<r±l)-O t - 1 

1 
X (k 2 _ k!)(k' _ k~) _ k2 Ik2 - kIll! (r2 _ 1)' (20) 

The first two terms of (17) are the Itsurface terms" 
from the two integrations by parts. The factor 
[(r + 1)/(t - 1)]" occurring in these terms [see 
Eqs. (18) and (19)] can be replaced by unity in 
the limit as t ~ <Xl. The remaining expression in 
(18) can be evaluated by appealing to the free­
particle limit. In this limit, GI = !:h = 0, so that 
G(kll , k l , w) = Go 1 •• -0' Inserting the known ex­
pression for the momentum-space Green's function 
on the left-hand side of this equation, and using (18) 
we find 

o3(k2 - k l ) (ik)3 
kl! k2 =-2 

- 2 11" 
r(r

2 
- 1) I 

X [W - k~)W - ki) - k' Ik2 - kill! (r2 
- 1)]2 r-.. · 

(21) 

We can apply this result to evaluate Go for general Z. 
By writing the limit of the product in (18) as the 
product of the limits, using (21) and the fact that 
the limit of the first factor, [(t + 1)/{t - 1)]", 
equals unity (as pointed out above), we find 

Go = o3(k2 - kl)/W - k~), (22) 

i.e., the limit (18) equals the free-particle Green's 
function also for finite Z. The limit (19) is more 
straightforward, and we find simply 

G . ik 1 
I = '/,P 11"2 Ik2 - k l 12 W - k;)W - ki)' (23) 

Putting these results together, we finally obtain the 
momentum-space Green's function in the form 

G(k k ) 
o3(k2 - k l ) 

2, 1, W = k2 _ k; 

+ . ik 1 
~II 11"2 Ik2 - k l 12 W - k;)(k2 - ki) 

( ')2 (ik)3 1 
+ ~II 7 (ka - k!)W - kD 

2 10
+) (r + I)" X dr--

ellr. _ 1 +a>;arc<,±l)-O t - 1 

1 
X (k2 

- k;)W - ki) - k2 lk2 -k l l2 (f - 1) , 

1m [k(r ± (t2 
- l)i») > 0. (24) 
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This is the integral representation for the momen­
tum-space Coulomb Green's function in its final 
form. In this form the Green's function is exhibited 
as a distribution plus ordinary functions. The con­
ditions 1m [k(r ± (r2 

- l)!)] > 0 here [carried 
over from (7)] exclude the points r at which the 
integrand has a pole from the interior of the r 
integration contour. 5 

It can be verified by direct substitution that the 
expression on the right-hand side of (24) actually 
satisfies the integral equation (3). We have already 
pointed out that the first term of (24) (which we 
have called Go) is the free particle Green's function. 
The second term (called G1) is found to be precisely 
the first Born approximation. In the Feynman 
language, the first term corresponds to no action 
of the potential, the second term corresponds to 
the potential acting exactly once, and the last 
term (~h) contains the effects of the potential acting 
two or more times. The momentum-space Coulomb 
Green's function thus appears to have a natural 
decomposition into a no-potential term plus a one­
potential term plus a many-potential term. Also, 
the k2 and k1 dependence of the expressions occurring 
in the integral representation (24) is quite simple. 
It was for both of these reasons that it was suggested 
earlier that the integral representation (24) may 
be convenient for applications. 

III. MOMENTUM-SPACE COULOMB GREEN'S 
FUNCTION IN CLOSED FORM 

The parameter integral for the many-potential 
term, 92, can be evaluated explicitly in terms of 
hypergeometric functions, giving a closed form ex­
pression for the momentum-space Green's function. 
We first make the change of variables 

t = [(r - 1)/(r + 1)], (25) 

obtaining 

denominator of (26), we obtain 

_ ')2 ik r(1 - ill) 
92 - (tv 11'2 (k2 

_ k;)(k2 
- k~) Ik2 - k112 

X q[Fi'(~ ~ ~) - Fi'(~ ~ ~)] , (27) 

where 

-"'1(0+) 1 
Fi.(z) = zr(ill) e

2 
. dt rip -1--' (28) 

11'1, +1.arc(0 -0 - tz 

The integral (28) gives a hypergeometric function, 

Fi.(z) = r(2 ~ ill) 2F1(1, 1 - ill; 2 - ill, z). (29) 

Equations (27) and (29) in conjunction with (17), 
(22), and (23) give the desired closed-form expression 
for the momentum-space Green's function. The 
notation 2F1(1, 1 - ill; 2 - ill; z) in (29) denotes 
that function of z which is analytic in the whole 
z plane, cut along the segment + 1 ::::; z < + aJ 

of the positive real axis and which reduces to the 
usual hypergeometric series inside the unit circle 
Izl < 1. The function Fi.(z) has the simple dif­
ferentiation property 

dFi.(z) = '!!:. F (z) _ 1 (30) 
dz z" r(I - ill)(I - z) t 

and reduces to just a logarithm in the free-particle 
case, ill = 0: 

Fo(z) = In (1 - z). (31) 

The function F .. (z) is an analytic function of hw 
in the whole cut plane. Consequently, the only 
poles of G(k2' k1' w) on the cut hw plane are the 
poles of the gamma function factor r(I - ill) 
of (27). But these are simple poles at the Bohr 
energy levels, as we know they must be. 
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4 1
(0+) 

X dt t- i• 
e2U 

- 1 +1 ;arc(l)-O 

X [1 - t 1 - q]-1[1 _ t 1 + q]-l 
l+q l-q' 

where 

2 _ k2 Ik2 - k l l2 

q - k4 - 2ek2 .k1 + k~k~' 
On making a partial fraction expansion of the 

6 This is verified directly in the Appendix. 

discussions with Dr. Lowell Brown and with Dr. 
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A.PPENDIX 

Of course, the fact that the conditions 1m [k(r ± 
(r2 

- I)!)] > 0 exclude the points r at which the 
integrand of (24) has a pole from the interior of 
the r integration contour, follows from the fact that 
these inequalities guarantee the convergence (finite­
ness) of the integral (6) for D(k2, k1' w). However, 
it may be of interest to check this by direct calcula­
tion, and that is the object of this appendix. 



                                                                                                                                    

COULOMB GREEN'S FUNCTION 1239 

We make the transformation r = cosh O. The 
branch of the (many-valued) function 0 = cosh -I r 
is determined by the conditions that 0 shall vary 
continuously with r and shall start out real and 
positive when r is on the initial part (near r = + !Xl 

on the positive real axis) of the r integration contour. 
The r integration contour is traced out by letting 
o run down the positive real axis from 0 = + !Xl 

to a point on the right of the origin 0 = 0, describing 
an arc above the origin which comes down on the 
negative real axis at a point on the left of the origin, 
and then going off to 0 = -!Xl along the negative 
real axis. Thus only 0 values for which 1m (0) ~ 0 
are involved. On the first part of the 0 integration 
path, the quantities r, 0, and (r2 - I)! are real 
and positive, so (r2 

- I)! = sinh o. This relation 
is preserved along the whole contour by continuity. 
Thus the conditions 1m [k(r ± (r2 

- I)!)] > 0 
become 1m [ke±9] > O. Writing 0 = 01 + i02 and 
k = Ikl ei~, 0 < 0 < '11', the conditions read 

(AI) 

Since we start out with 0 < 0 ± O2 < 'II' (02 = 0 
along the first part of the contour), the two angles 
a ± O2 must remain between 0 and 'II' in order not 
to violate (AI). This leads to the condition 

o ::; O2 < min [a, 'II' - a] (A2) 

on the contour in the 0 plane. (As explained above, 
negative values of O2 may be excluded.) 

The conditions (A2) describe the region in the 
o plane in which the 0 integration contour must 
lie in order to satisfy the inequalities 1m [k(r ± 
(r2 - I)!)] > 0 at all points on the contour. Let 
us next map this region onto the r2 plane. Write 
r2 = W = WI + iW2 = cosh2 0 = cosh2 (01 + i(2). 

We find 
WI - ! = !(cosh 201 cos 2(2), 

W2 = !(sinh 201 sin 2(2), 

We now distinguish two cases: 
Case 1: 

Case 2: 

tn- :::; min [0, 'II' - oJ < t1l'. 

(A3) 

(A4) 

In Case 1 we find that the integration contour in 
the r2 plane must fall in the interior of the region 
to the right of the right-hand branch of the hyperbola 

(WI - !)2/COS2 2a - wUsin2 2a = i (A5) 

(the shaded area, 1.1, of Fig. 1). As min [a, 'II' - a] 

w· t' PLANE 

FIG. 1. The shaded area, 'V, 
is the image in the r plane of 
the permitted region for the 
integration contour of (24). 
The dotted curve is the locus 
of possible values, V, of r at 
which the denominator of the 
integrand of (24) vanishes. The 
drawing is for Case 1. For a, 
U, Vb, and Va, see Eqs. (A9)­
(A12). 

approaches h the boundary of 1.1 approaches coin­
cidence with the vertical line W = t. When min 
[a, 'II' - aJ increases over the value t~i.e., as we 
go over into Case 2-cos 2a becomes negative and 
it is seen from Eq. (A3) that the boundary of 1.1 
goes over (continuously) into the left-hand branch 
of the hyperbola (A5). Thus in Case 2 the permitted 
region in the r2 plane for the integration contour 
is the interior of the region to the right of the 
left-hand branch of the hyperbola (A5). 

Now the denominator of the integrand of (24) 
will vanish only if 

;-2 _ e - 2ek2 ·k l + k;k~ 
~ - k2 1k2 _k112 

(A6) 

and plot the locus of possible V values on the r2 
plane. We have 

2k2 ·kl _ Ikl 2 + k;kUlkl2 2~ 
VI + Ik2 _ k

l
12 - Ik2 _ k

l
12 cos 0, 

(A7) 

V - Ikl 2 
- k;kUlkl 2 

• 2~ 
2 - Ik2 _ k

l
12 sm o. 

In Case 1 we have cos 20 > 0 and the possible V 
values lie on the right-hand branch of the hyperbola 

(V 2k2 ·k! )2( 2 )-1 
1+ Ik2 _ k

l
12 cos 2a 

V; 4k;k~ 
- sin2 2a = Ik2 - k l 1

2 (AS) 

(the dotted curve in Figure 1). In the limit as a 
increases toward t1l', this locus goes over into the 
vertical straight line V = -2k2·kl /lk2 - k 1 1

2
• As a 

increases beyond i~i.e., as we go into Case 2-cos 
2a becomes negative and the locus of possible V 
values goes (continuously) over into the left-hand 
branch of the hyperbola (AS). 

We will show that the locus of possible V values 
always lies outside (or at worst, coincides with the 
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boundary of) the permitted region in the r2 plane 
for the integration contour. When we take the 
square root, forming r = cosh e, the region 'l) will 
go into the permitted region for the integration 
contour in the r plane. This region (as noted in 
the text) is the interior of the region to the right 
of the right-hand branch of the hyperbola (S). The 
locus of possible values of Vi will split up into two 
disjoint pieces, corresponding to the two roots of 
V, but these pieces will still lie outside (or at worst 
coincide with the boundary of) the permitted region 
for the integration contour. Now these Vi values 
are just the possible r values at which the de­
nominator of (24) has a pole. Thus all !; values 
at which the denominator of (24) has a pole will 
lie outside the permitted region for the!; integration 
contour and hence will lie outside the contour 
itself. 

We will establish this result here only for Case l. 
Case 2 can be argued in the same way. We first 
note that the asymptotes of the two hyperbola 
(A5) and (AS) are parallel. In both cases the asymp­
totes are inclined to the real axis at angles ±ex, where 

ex = min [20, 211" - 20]. (A9) 

Hence to show that the right-hand branch of the 
hyperbola (AS) lies outside the region '0 it suffices 
to show that (a) the intercept on the real axis of 
the right-hand branch of the hyperbola (AS) does 
not lie to the right of the intercept on the real 
axis of the right-hand branch of the hyperbola 
(A5) , and (b) the "center" of the hyperbola (AS) 
does not lie to the right of the "center" of the 
hyperbola (A5) (see Fig. 1). The intercept on the 
real axis of the right-hand branch of the hyperbola 

(A5) occurs at 

(AI0) 

and the center occurs at w = !. Now the intercept 
of the right-hand branch of the hyperbola (AS) 
occurs at 

V _ -2k2 ·k1 + 2k2kl cos 20 
b - k~ - 2k2 ,k1 + k~ 

= 1 _ k~ -2 2k2 'k1 cos 20 t k~ 
k2 - 2k2 ,k1 + kl 

< 1 _ k~ - 2k2 ,k1 cos 20 + k~ 
- (k2 + k1)2 

4k2kl 2 2 (A ) 
::=:; (k2 + k1)2 cos o::=:; cos 0 = U, 11 

i.e., this intercept does not lie to the right of the 
intercept of the boundary of '0. This establishes (a), 
The center of the hyperbola (AS) is located on the 
real axis at 

< 2k2kl < 1 
- (k2 + k1)2 - "2, 

(AI2) 

and so does not lie to the right of the center of the 
hyperbola (A5). This establishes (b). The conclusion 
that the conditions 1m [k(r ± a·2 

- 1)1)] > 0 
exclude the points r at which the denominator of 
the integrand of (24) has a pole from the interior 
of the r integration contour now follows. 
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A Model of Interacting Radiation and Matter* 
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We investigate the long-time behavior of a model consisting of N two-level atoms in a lossless 
cavity. The Hamiltonian of our system contains the radiation oscillators in addition to the matter 
Hamiltonian and the usual I j ·Adv interaction term. In order to treat the system perturbatively, it 
would be necessary to remove the tremendous degeneracy of the system. Since this is prohibitively 
difficult, and since we are interested in the long-time behavior of the system, we solve the quantum 
mechanical Liouville equation directly for a wide class of physically important initial distribution 
functions. We show the effective expansion parameter is :yN:y where:y is a dimensionless atomic dipole 
moment and N is the number of atoms. In the lowest order we find the self-consistent field approxi­
mation. In the next order, particle-field correlations appear. We explicitly solve the equations of 
motion for the particle-field correlations in terms of the average quantities that appear in the self­
consistent field approximation. We show the self-consistent field approximation consists of five first­
order differential equations. Next we show the equations of motion for the density matrix of the 
system correct to order (:yN:y)2 are equivalent to eight first-order differential equations. The three 
additional equations are needed to describe the three second moments of the density matrix of the 
electromagnetic field that appear in second order. Our lowest-order microscopic equations are equiv­
alent to semiphenomenological theories and our higher-order equations contain only the measurable 
second-order moments of the electromagnetic field in addition to the variables that appear in semi­
phenomenological theories. 

I. INTRODUCTION 

I N this paper we derive the equations of motion 
satisfied by the quantum mechanical density 

matrix of a model of interacting atoms and radia­
tion. We explicitly solve for the particle-field cor­
relations in terms of the one-particle density matrix 
and first and second moments of the electromagnetic 
field. We thus obtain for the one-particle density 
matrix a nonlinear equation which to lowest order 
satisfies the self-consistent field approximation. 

Our model of interacting radiation and matter 
consists of N distinguishable two-level atoms inter­
acting with the cavity modes in a lossless cavity. 
The model of the matter system and the inter­
action Hamiltonian is essentially the same as the 
model introduced by Dicke. 1 Our model differs in 
one essential respect from Dicke's model in that 
we include the Hamiltonian of the radiation field 
in our system Hamiltonian. We do this because we 
wish to find the long-time behavior of the system 
including saturation effects corresponding to re­
peated absorptions and subsequent re-emissions. 
Dicke asked questions about driven systems and 
spontaneous emission which he answered by the help 
of the introduction of a constant of the motion 
whose eigenvalues he called the "cooperation 

* The research reported in this paper was sponsored in 
part by the Air Force Cambridge Research Laboratories, 
Office of Aerospace Research. 

1 R. H. Dicke, Phys. Rev. 93, 99 (1954). 

number." Although we do not make explicit use 
of this conservation law our final results are con­
sistent with it. 

For a careful discussion of the matter system 
alone we refer the reader to Dicke's paper. However, 
because the degeneracy is the single most important 
property of the system we will present here a brief 
account of the effect that inclusion of the radiation 
field in the Hamiltonian has on the order of the 
degeneracy. Assume we have N two-level atoms 
with the same two-level energy difference, hwo, which 
is essentially equivalent to the energy of a quantum 
of one of the cavity modes, hr!. The lowest eigen­
state of the total system is nondegenerate and the 
radiation oscillator and all the atoms are in their 
ground states. The unperturbed energy, hwo, is 
(N + I)-fold degenerate. The degenerate states are 
one state with the radiation oscillator in its first 
excited state and all N atoms in their ground state, 
and N states with the radiation oscillator in its 
ground state and one atom at a time in its excited 
state. The distinguishability which leads to the 
degeneracy arises from the fact that wavefunctions 
of the separate atoms do not overlap. The un­
perturbed energy 2hwo is {I +N +!N(N -1)/2}-fold 
degenerate. The degenerate states are one state with 
the radiation oscillator in its second excited state 
and the atoms all in their ground state, N states 
with the radiation oscillator in its first excited state 
and one atom at a time in its excited state, and 

1241 
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N(N - 1)/2 states corresponding to the number of 
ways that two atoms can be singly excited while 
the radiation oscillator is in its ground state. 

The degeneracy of the unperturbed energy eigen­
value, mhwo, is 

m N! 
t; j! (N - j)!' 

(1.1) 

In order to apply perturbation theory to the 
system we would first have to remove the degeneracy 
by diagonalizing a matrix for each integer, m ::; N, 
whose dimension is given by Eq. (1.1). 

The degeneracy arises physically because "each 
atom sees all the (N - 1) other atoms through the 
electromagnetic field." To anticipate our resolution 
of the problem we replace the preceding statement 
by the statement "each atom sees all the (N - 1) 
other atoms to the lowest order through the average 
electromagnetic field." The self-consistent field 
approximation which we shall refer to as SCF A 
is nonperturbative and leads to equations that are 
meaningful for all time. Our treatment of the 
problem is purely quantum mechanical and it is 
valid for systems containing a single quantum. The 
condition required for the validity of the SCF A is 
that there be an upper limit to the particle-field 
correlations present initially. However, if the par­
ticle-field correlations are initially zero they will 
grow to nonzero values by higher-order corrections 
to the SCF A which we shall explicitly calculate. 
Our lowest-order equations are essentially equivalent 
to the semiphenomenological theories derived by 
Jaynes and Cummings2 and Tang.3 

In Sec. II we introduce the Hamiltonian of our 
model and we discuss further the degeneracy of the 
system. We show in Sec. III that the solution to 
lowest order of the quantum mechanical Liouville 
equation is the SCF A. 

In Secs. IV and V we find the equations of motion 
satisfied by the quantum mechanical Liouville equa­
tion to second order and we solve these equations 
in terms of the variables which appear in the lowest 
order which is the SCF A. 

We show in Sec. VI the relationship between the 
lowest-order equations of our theory and the semi­
phenomenological theories,2,3 and we express the 
higher order corrections to the SCF A in terms of 
phenomenological variables. 

In the Appendix we find the equations of motion 
satisfied by the electromagnetic field fluctuations. 

2 E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 
(1963). 

• C. L. Tang, J. Appl. Phys. 34, 2935 (1964). 

II. HAMILTONIAN OF THE MODEL 

We consider N two-level atoms with energy levels 
Eo = !(hwo) and Eb = -!(hwo). The Hamiltonian 
for the atoms is 

where 
t t 

[0'",0',,]+ = 0, 

and 

The plus subscript indicates an anticommutator. 
The vanishing of the commutators for different 
molecules represents the fact that we are treating 
the atoms as distinguishable. We are assuming the 
density of atoms is sufficiently low that the overlap 
of the wavefunctions is negligible and thus the 
effects of symmetry may be neglected. The momen­
tum of the center of mass of the ath particle is P ". 

A convenient representation of the matter system 
is a Kronecker product of single-particle spaces. In 
the single-atom space we may represent the algebra 
of the operators in the following form 

(2.2) 

where 

O'c == [O',O't] and if;a = (~) , if;b = (~). 
The Hamiltonian for the electromagnetic field is 

(2.3) 

where 

[qk, Pk'] = ihlikk' and [qk, qk'] = [Pk, Pk'] = O. 

The vector potential and the electromagnetic field 
in the cavity are given by 

A(xt) = c(47r)! 2: Ekqk(t)Ek(x), 
k 

E(xt) = _(47r)l 2: EkPk(t)Ek(x), 
k 

B(xt) = -c(4n} 2: (Ek x V)qk(t)Ek(x). (2.4) 
k 

The Ek(x) are the eigenfunctions of the cavity and 
Ek is a unit vector in the plane of polarization. 
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Hamilton's equations of motion for HI give the free 
field Maxwell's equations. It is often convenient to 
represent the electromagnetic fields in terms of 
creation and annihilation operators, 

HI = L: (Mha!ak + !), (2.5) 
k 

where 
t 

[ak, ak'] = Ow, 

ak = (2hQkf!(Pk - iQkqk) , 

a! = (2hQk)-!(Pk + iQkqk)' 

The interaction Hamiltonian, Hi, is 

+ u:<a Ijk(Xa)I b)}qkEk(Xa), (2.6) 

where X a is the center of mass of the ath particle and 

(a Ijk(Xa)I b) == (e/2m)[Ek(Xa)rl J lf~(r) 
X {Ek·pEk(X" + r) + Ek(X" + r)Ek,p}lfb(r) dr 

where P = (h/i)'Vro 
Equation (2.6) is the exact expression for the 

off-diagonal components of the particle current 
vector. The usual A 2 term is diagonal in the particle 
operators and constitutes a perturbation of the free 
field which is quadratic in annihilation and creation 
operators and can be removed to any order by a 
suitable canonical transformation. Since the A 2 term 
is usually small we neglect it. Combining Eqs. (2.1), 
(2.3), and (2.6), we obtain 

H = heN) + HI + Hem + Hi = Ho + Hi' (2.7) 

Since the effect of the electromagnetic inter­
actions on the center-of-mass motion is usually 
negligible we might consider dropping Hem. However, 
Hi depends on the center of mass through X" which 
means the center-of-mass motion can and does have 
an appreciable effect on the internal degrees of 
freedom.' 

In this paper we study the effect of correlations 
on the collective behavior of the system. In order 
to temporarily avoid the complications of the center­
of-mass motion, we consider waves that are large 
compared to the dimensions of the cavity. Then 
Ek(X ,,) "" V-! is independent of X" and Hi becomes 

N 

Hi = L: L: qd rkUk + rtu;l, (2.8) 
k " 

, W. E. Lamb, Jr., Phys. Rev. 134, A 1429 (1964). 

where 

To avoid an excess of subscripts we will consider 
a single mode. When the calculations are complete, 
the subscript k can be reinserted by inspection. In 
order to compare our results with semiphenom­
enological theories we replace the matrix elements 
of the current operator by the matrix elements of 
the dipole operator and we obtain 

Hi = 'YP L: (ua + u:) == 'YP L: J.L", (2.9) 
a " 

where'Y = eV-!(al E'r Ib), and where we have used 

(a IE·pl b) = i1rUJJo(a IE·rl b) and iwoq = p for Wo = Q. 

The reduction of the rigorous interaction Eq. (2.6) 
to Eq. (2.8) involves only one essential assumption, 
namely the neglect of the motion of the center of 
mass. Thus we neglect the effects of the Doppler 
broadening in the present paper. Note that this 
assumption is valid in any case when the wave­
length of the radiation is greater than the dimensions 
of the container. 

When we express p in terms of annihilation and 
creation operators using Eq. (2.5), we observe that 
Hi consists of two types of terms, 

N 

Hi = 'Y(!hQ)l(a + at) L: (u" + u:) 

(2.10) 

where 

N 

Hd = 'Y(!hQ)' L: (atu a + au:), 
" 
N 

Hnd = 'Y(!hQ)' L: (atu: + au,,). 
" 

Since Hnd creates (destroys) excited atomic states 
at the same time as it creates (destroys) photons, 
it has no matrix elements that conserve the un­
perturbed energy. Consequently, it can be diag­
onalized to order 'Y2 with ease. Actually semiphenom­
enological theories implicitly neglect Hnd when they 
discard terms whose frequency dependence is propor­
tional to ±2wo compared to woo vVe retain Hnd 
because it is inconsistent to neglect it when we go 
beyond the SCFA as we do in Secs. IV and V. 

To see how the problem of degeneracy discussed 
in the Introduction arises we investigate the equa­
tion of motion satisfied by H d, 
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N N 

= 'Y(!hn)i L: L: [atua + au:, liwou~up + hnata] 
p 

= 'Y(!hn)i L: lliwoa[u:, u:ua] + liwoat[ua, U:u a] 
a 

N 

= 'Y(!hn)i L: lliwo(atu~ua - au:u~) 
a 

N 

= 'Y<thn)i(liwo - hn) L: (atua - au:). 
a 

We neglected the effect of Hnd on Hd because it 
is of order '1'2 and can not mitigate in any way 
the problem of removing the lowest-order degen­
eracy. Thus for Wo = n, Hd is a constant of motion 
to order '1'2. This means the lowest-order perturbation 
theory is completely degenerate and removing the 
degeneracy is equivalent to diagonalizing for each 
unperturbed energy eigenvalue, mhwo, a matrix 
whose dimension is given by Eq. (1.1). 

Since the lowest-order perturbation theory re­
quires the diagonalization of so many extremely 
large dimensional matrices, we should investigate 
why we want the eigenvalues and eigenfunctions 
and what we would do with them if we had them. 
First we want to discuss the long-time behavior of a 
system with absorptions and repeated re-emissions. 
Ordinary perturbation theory is not valid for these 
times. The second reason we would like both eigen­
functions and eigenvalues is to construct the unitary 
transformation that diagonalizes the quantum me­
chanical Liouville equation for the density matrix 
of the system. 

We conclude this section with another aspect of 
the degeneracy of the system. Consider once again 
the Hamiltonian, H = Ho + 'YHd, where we have 
neglected the unimportant Hnd. The unperturbed 
energy, EO = liwo, is (N + I)-fold degenerate and 
the perturbation, H d , has constant matrix elements, 
'1' and 0, between the degenerate states. With the 
use of Wigner-Brillouin perturbation theory we can 
show one of the energy eigenvalues is -'YN where 
N is the number of atoms. This phenomenon arises 
because each atom sees all the other atoms through 
the electric field. If we change this statement to 
read "each atom sees all the other atoms to the 
lowest order through their average behavior" we 
are able to solve the problem as we shall show in 
the next section. 

III. SELF-CONSISTENT FffiLD APPROXIMATION 

We are led to consider the density matrix for two 
reasons; first, we expect the fact that each atom 
sees the averaged behavior only can be represented 
statistically, and second, many of the interesting 
cases are problems of statistical mechanics which 
require ensembles rather than single quantum states. 

The density matrix F N(I, 2, ... N, q) for N atoms 
plus the radiation oscillator satisfies the quantum 
mechanical Liouville equation 

(3.1) 
where 

tr1.2"'N •• FN = 1. 

Our notation indicates FN is an operator in the 
Hilbert space of the first, second, ... , Nth particle 
and in the Hilbert space denoted by q of the radiation 
oscillator. We do not need an explicit representation 
of a matrix element of FN ; however, a typical one 
has the form 

(+-++ ... ,q IFNI g, +--+ ... ), (3.2) 

where a + or (-) in the jth position indicates the 
jth atom is in its excited (unexcited) state. For 
given q and g there are (2N)2 matrix elements 
corresponding to all the ways of writing +'s and 
-'so In the Hilbert space of the radiation oscillator 
the matrix is infinite. It is denumerably infinite if 
we choose the number representation or continuously 
infinite if we use the q representation. We are able 
to express all our results as operators or as traces, 
both of which are independent of representation. 
Thus the argument of an operator denotes not 
matrix elements but operator functional dependence. 

When we take the trace of Eq. (3.1) over the 
coordinates of the Nth atom we obtain 

ih(aFN_1/at) + [FN-1, H N-1] = 'YtrN [PJ,LN, FN], (3.3) 

and after (N - s) similar operations we obtain 

ih(aF./at) + [F., H.] 

= (N - sh tr(,+ll [PJ,L(Hll, F ('+1)]' (3.4) 

In deriving Eq. (3.4) we used the fact that F is a 
symmetric function of its arguments. 

We obtain the equation for the density matrix 
of s atoms by taking the trace of Eq. (3.4) over 
the oscillator coordinates 

ih(ap./at) + [P., h(s)] + '1' tr. [F., p ~ J,L; ] 

= (N - sh tr.'('+ll [PJ,L(,+11l F(,+ll] = 0, (3.5) 
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where P. == tra F •. The trace vanishes since PP,(.+l) 

depends only on the coordinates of the (s + 1)th 
atom and the radiation oscillator, and the trace 
is over both variables. 

We add the term 

'Y(P>[PI' ~ p,;] 

to both sides of Eq. (3.5) and we obtain 

ih(CJp./CJt) + [PI' h(s)] + 'Y(P>[P" ~ p,;J 

Eq. (3.9) is completely rigorous. To find the equation 
of motion satisfied by R(q) to lowest order, we 
replace F I (1, g) by PI(1)R(g), 

ih(aR/at) + [R, H f ] = (N - 1)')'(p,)[P, R], (3.10) 

where 

(p,(t» == trl P,lPl(1, t). 

The quantity (p,(t» is the dimensionless dipole 
moment per atom. The total dipole moment of 
the system is N 'Y V1(p,). For convenience in keeping 
track of the powers of 'Y and N we use dimensionless 

= 'Y[ t p,;, lI I (1, 2, ... ,8) - P,(P) J, (3.6) atomic quantities. In Sec. VI we express all of our 
equations in terms of macroscopic quantities. 

where 
(P) == tra pR(q) == trl.a pFl(1, q). 

The expression 

IIj(1,2, ... s) = tra pi F.(1, 2, ... 8, q) 

is an operator in the space of s atoms and IS a 
measure of particle-field correlations. 

To solve Eq. (3.6) we assume a solution of the 
forms 

F, = Pl(1)Pl(2) ... PI(s)R(q) 
• I 

+ ('YN'Y) L xCi, q) II Pl(;} + ('YN'Y)2 .... (3.7) 
, iyt!i 

In this section we are concerned with only the 
zeroth-order term which represents a lack of 
particle-particle and particle-field correlations. In 
the next section we derive the equation satisfied 
by xCi, q) and explain the choice of the expansion 
parameter 'Y N 'Y. 

When the first term of Eq. (3.7) is substituted 
in Eq. (3.6), we obtain 

ih(ap,/at) + [p., h(s)] + 'Y(P>[P" ~ p,;] = 0, 

or equivalently, 

ih(apr/at) + [PI' h(1)] + 'Y(P)[Pl' P,l] = O. (3.8) 

We need the operator equation of motion for 
R(g) to obtain an equation of motion for (p). 
Since R(g) is defined as trl F l(1, g), we take the 
trace of Eq. (3.4) for (8 = 1) over the particle 
coordinate and we obtain 

ih(aRjat) + [R, H f ] 

= (N - 1),), trl [PP,I' FI(1, q)]. (3.9) 
iN. N. Bogoliubov, "Problems of a Dynamical Theory in 

Statistical Physics" (translated by E. K. Gora), in Studies in 
Stati8tical Mechanics, edited by J. De Boer and G. E. Uhlen­
beck (North-Holland Publishing Company, Amsterdam, 
1962), pp. 5-118. 

To find the equation of motion to lowest order 
satisfied by (p) we multiply Eq. (3.10) by the 
operator p and take the trace over the oscillator 
variables. We obtain 

ih(a(p)/at) + tra p[R, !(q202)] = O. 

We may simplify Eq. (3.11) to read 

iJ(p)/iJt + 02(q) = 0, 

where we have used 

tr. p[R, !(q202)] = - 02 tr. q[q, p]R 

(3.11) 

(3.12) 

= ih02(q), (q) == tr. qR. 

We obtain the equation for (q) by multiplying 
Eq. (3.10) by q and taking the trace over the 
oscillator variable. The equation is 

ih(a(q)/at) + tr. q[R, !p2] = N'Y(p,) tr. q[p, R], 

which may be written 

a(q)/at - (P) = N'Y(p,). (3.13) 

We obtain an equation of motion for (p) alone 
by substituting Eq. (3.13) in Eq. (3.12), 

a2(p)/at2 + 02(P) = _N'Y02(p,). (3.14) 

Equations (3.8) and (3.14) together constitute a 
complete theory which is the SCF A. 

The SCF A must fulfill two essential requirements 
to be a good solution of a physical problem. The 
first requirement is dynamical and states that a 
degree of freedom is more influenced by a large 
number of degrees of freedom than it is by a few 
nearest neighbors. In a plasma this requirement is 
met by the long-range nature of the Coulomb force. 
In the present problem the N dependence of the 
right-hand side of Eq. (3.14) indicates that all 
atoms contribute equally to the electric field (p), 
and each atom sees all the other atOlns through 
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(p). The second requirement is statistical and states 
that initially there can be no zeroth-order particle­
particle or particle-field correlations. If these two 
requirements are met then the SCF A is a good 
approximation. These two conditions are indepen­
dent of the classical or quantal nature of the problem. 
Our treatment of all degrees of freedom throughout 
the paper is purely quantum mechanical. To em­
phasize this we point out that, even if the total 
energy of the system were a single quantum, the 
SCF A would be a good solution as long as the initial 
density matrix had no particle-particle or particle­
field correlations. The N that appears in Eq. (3.14) 
and throughout the paper is the constant total 
number of atoms not the number of excited atoms. 
In other words, the SCF A is a particular solution 
of our quantum mechanical problem. This discussion 
has been necessary because the SCF A represented 
by Eqs. (3.8) and (3.14) has often been referred 
to erroneously as a "semiclassical" theory. This 
has happened because of the semiphenological nature 
of some derivations of the SCF A. 

The SCF A has replaced the unmanageable de­
generacy of the exact problem by a nonlinear equa­
tion for the density matrix of a single atom. Although 
this equation is difficult to solve in general, it rep­
resents a great advance in the tractability of our 
problem. Originally we found that the lowest-order 
perturbation theory required almost an exact solu­
tion of the full problem. The SCF A has the important 
property that it makes qualitative sense (remains 
bounded, etc.) for long times even if we neglect 
the higher-order terms. We now show that even if 
particle-field correlations are initially zero they grow 
to nonzero values. 

IV. PARTICLE-FIELD CORRELATIONS 

It is not necessary to solve for xCI, q) in detail 
to go beyond the SCF A, since we need to know 
only the first conditional moment I1,(I, t). In this 
section we find the equation of motion satisfied by 
II, (1, t) and we solve the equation in terms of 
variables that appear in the SCF A. First, however, 
we will justify the use of 'YN'Y as the expansion 
parameter. From Eq. (3.14) we observe that (p) is 
proportional to N'Y; therefore, the expansion param­
eter in Eq. (3.8) is proportional to 'YN'Y. We show 
in this section that the corrections to the SCF A 
are proportional to ('YN'Y) 2. 

We rewrite Eq. (2.9) to obtain an expression for 
the dimensionless coupling constant, 

:~ = 'Y(2hQ)-l(a + at) f. (O'a + 0':) 
a 

N 

= .y(a + at) L (O'a + 0':). 
a 

The condition for the validity of our expansion 
procedure is 

.yN.y == (N/V)e2 I(a I£·rl b)12 (211'/hQ)« 1, 

where we have used the dimensionless parameter 
.y = 'Y(2hQ)-1. Since 'YN'Y is just 2hfJ(.yN.y), it is not 
necessary to go over to dimensionless variables. Thus, 
'YN'Y "small" means small compared with 2hQ. 

We obtain the equation of motion for I1,(I, t) 
by multiplying Eq. (3.4) for (s = 1) by p and taking 
the trace over the oscillator variable 

ih ilIll~; t) + [Il,(I), h(I)] 

+ tr. P[F" HI] + 'Y[Il2(I, t), ,u,] 

= (N - 1)"( tr.,2 P[P,u2, F 2 ] 

= (N - 1),,( tr2 [,u2, Il2(2, t)] = O. (4.1) 

We can simplify the third term of Eq. (4.1), 

tr. P[F" HI] = -tr. [p, HI]F, = _!fJ2 tr. [p, q2]F, 

= ihfJ2 tr. qF, == ihfJ2Il'(I, t), (4.2) 

where we have used the definition 

Il i (I,2, ... s) == tr. qiF.(I, 2, ... s, q). 

When Eq. (4.2) is substituted in Eq. (4.1), we 
obtain 

ih ilIll~~' t) + [Il,(I, t), h(I)] + ihfJ2Il'(I, t) 

+ 'Y[Il2 (I, t), ,u,] = O. (4.3) 

We introduce our expansion 

where P without a subscript is PI, into Eq. (4.3) 
and we obtain 

ih(iI/ilt)(p(P) + 'YN'Y1I'1) + (P)[p, h(I)] 

+ 'YN'Y[1I'" h(I)] + ihQ2(p(q) + 'YN'Y1I") 

+ 'Y(p2)[p, ,u] + 'Y('YN'Y)[1I';,,u] = 0, (4.4) 

where we have used the definitions 

I1,(I, t) = (p)p(I) + 'YN'Y1I',(I, t), 

1I'i(I, t) == tr. pix(I, q), 

I1'(I, t) = (q)p(I) + 'YN'Y1I"(I, t), 

11';(1, t) == tr. qix(l, q). 
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The equation for the one-particle density matrix 
to order ('YN .. ,d in the new variables now takes 
the form 

ih(iJp/iJt) + [p, h(l)] + 'Y(P)[p, IL] 

= 'Y('YN'Y)lIL, 7r,(I, t)]. (4.5) 

Since we will show that 7r,(1, t) is of order N'Y, 
the right-hand side of Eq. (4.5) is proportional to 
('YN'Y) 2. 

When we regroup the terms in Eq. (4.4), we obtain 

(P)(ih ~: + [p, h(I)]) + ihp( iJ~) + n2(q») 

+ 'YN'Y(ih iJ7r'~~' t) + [7r,(1), h(I)] 

The expression let) is complicated and we analyze 
it in the next section. When we introduce our expan­
sion for F 1 and regroup terms, we obtain 

ihp(iJ~i) - (P) - 'YN(/J.») + (q)(ih ~: + [p, h(l)]) 

(4.9) 

+ 'YN'Y(ih a~l + [7r', h(l)] - ih7r1 

+ (N'Y)-l(qp)[p, ILl) = 'YN'Yl(t). (4.9) 

The first bracket vanishes because of Eq. (3.13). 
When we substitute Eq. (4.5) in the second bracket, 
we obtain 

ih(iJ7r1 / at) + [7r" h(l)] + ih7r1 

(4.6) + (N'Ytl«qp) - (q)(P»[p, IL] = let). (4.10) 

where we have dropped the last term of Eq. (4.4) 
since it is of order ('YN'Y) 3. 

The second bracket of Eq. (4.6) vanishes because 
of Eq. (3.12). When Eq. (4.5) is substituted in 
Eq. (4.6) ,we obtain 

ih a7r, ~~' t) + [7rI' h(l)] + ihn27r'(1) 

Eqs. (4.7) and (4.10) constitute two first-order 
equations for 7r, and 7r' which we now solve for 7rl' 
We multiply Eq. (4.10) by in and add it to Eq. (4.7), 

ih(iJ/iJt)[7rl(l) + in7rl(l)] + [7rl(l) + in7rl(I), h(l)] 

+ hn[7rl(l) + in7r'(I)] + [p, IL]B(t) = inlet), (4.11) 

where 

+ (N'Ytl«P2) - (P?)[p, IL] =0 . (4.7) B(t);: BR(t) + iB1(t) 

We need to know (p2) and 7r1(1) to solve this = (N'Y)-I[«P2) - (p?) + in«qp) - (q)(P»]. 

equation for 7r1(1). We derive the equation satisfied We define two new variables l1t and 11 in the following 
by (p2), Eq. (A3), in the Appendix. The quantity manner: 
«p2) _ (p?) is positive and proportional to (N'Y)2. 
Consequently, the right-hand side of Eq. (4.5) is 
proportional to ('YN'Y? 

We derive the equation of motion 7r'(1) in the 
same manner as we used to obtain Eq. (4.7). We 
multiply Eq. (3.4) for (8 = 1) by q and take the 
trace over the oscillator variable 

ih iJITI~~, t) + [ITI(l), h(l)] 

where 

- ihITI(I) + 'Y tr. q[FI' PIL] 

= (N - 1) tr2 •• q[P1L2, F2] 

= (N - I)"(ih(lL)p(l) + 'YN'Yl(t), (4.8) 

let) ;: 'YN tr2 .• q[P1L2, p(1)x(2, q) + p(2)x(l, q)]. 

We used 

tr. q[F" HI] = -tr. [q, Hf]F, 

= -! tr. [q, p2]F, = -iii tr. pFl == -ihll,Cl). 

When we substitute l1t and 11 in Eq. (4.11) we obtain 

ih(iJr//iJt) + [11\1), h(I)] + hnl1t 

+ [p, IL]B(t) = inl(t). (4.12) 

If we now multiply Eq. (4.10) by -in and add 
it to Eq. (4.7) we obtain 

ih(iJl1/at) + [?j, h(I)] - hn?j 

+ [p, IL]B*(t) = -inlet). (4.13) 

Eqs. (4.12) and (4.13) are inhomogeneous first­
order equations which we can solve for any initial 
conditions. For definiteness we assume 'Y/ and 'Y/t 

vanish in the infinite past. For these initial condi­
tions we obtain 

~ t icc i 01' -it.>T[ ( ) i(l)1' ( ) n?j = 0 e e IL, p t - T]e B t - T dT 

+ in lW e,Qre-,wrl(t - T)e,wr dT, (4.14) 
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and we obtain, after some regrouping of terms, 

ih(iJp/iJt) + [p, h(l)] + p(l) tr. [R, H f ] 

(4.15) + 'Ytr. [pR, ILIP] + 'YN'Y(i(ihro/at) + [11"0(1), h(l)] 

where !u.>(1) = h(l) is the one-atom Hamiltonian + tr. [X, H f ] + 'Ytr. [X, ILIP]) = N'Y t r2 •• [P1L2' F2], 
operator. When we add Eqs. (4.14) and (4.15) and where we have used tr. R(q) = 1. We may simplify 
divide by two we obtain the above equation to 

h1l"1 (1, t) 

= L" cos fhe-'Iol'[p(t - T), lL]e,Iol'BR (t - T) dT 

- 1'" sin nTe-·Iol'[p(t - T), lL]e,Iol'B1(t - T) dT 

(4.16) 

If we set I = 0, then Eqs. (4.16) and (4.5) con­
stitute a complete theory correct to order ('YN'Y/ 
for p where the moments of the electromagnetic 
field satisfy Eqs. (3.12), (3.13), and Eqs. (A3), (A4), 
and (A5). We analyze these equations in Sec. VI. 
We show in the next section that I(t) vanishes 
except for special initial conditions. 

V. SOLUTION FOR I(t) 

The definition of I(t) given in Eq. (4.8) may be 
written 

I = N'Y tr2 .• q[P1L2, p(1)x(2, q) + p(2)x(1, q)] 

= N'Ylp(l) tr. q[p, tr2 C#L2X(2, q»] 

+ (p,) tr. q[p, x(l, q)] I 
= ihN'Ylp(l)ji(t) + (1L)1I"0(1, t)}, 

where 

(5.1) 

11"0(1, t) == tr. x(1, q). 

We now show the equations of motion satisfied 
by the new moments of X are 

ih[a1l"0(1, t)/at] + [11"0(1, t), h(l)] = 0 (5.2) 

and 
a2ji/ae + w~ji = O. (5.3) 

If 11"0(1) and ji are zero initially, they will remain 
zero; thus, as we stated earlier, 11"0(1, t) and ji(t) 
are important for only a few special sets of initial 
conditions. 

We find the operator equation of motion satisfied 
by 11"0(1, t) by taking the trace of Eq. (3.4) for FI 
over q after the substitution 

FI = R(q)p(l) + 'YN'YX(l, q), 

'YN'Y(ih(a1l"0jat) + [11"0(1), h(l)]) 

= "IN tr2 .• [P1L2, F2(1, 2, q)], (5.4) 

where we have used Eq. (4.5) and the following 
relations: 

'Ytr. [p(l)R, ILIP] == 'Y(P)[p(l), ILl], 

tr. [R, H,] = o. 
We now see Eq. (5.2) follows from Eq. (5.4). The 
trace vanishes identically because the operator PIL2 
does not depend on atom-one operators. The general 
solution for Eq. (5.2) is 

(1 t) -,101' (1 0) if,lI 11"0, = e 11"0, e . (5.5) 

In the process of finding the equation of motion 
for ji we will find the equation of motion for (p.). 
We multiply Eq. (3.4) for FI by IL and take the 
trace over atom one and the oscillator coordinate, 

ih(ajat)(trl .• ILFI) + trl •• IL[FI, h(l)] + trl .• p.[F1 , HrJ 
+ 'Ytrl .• IL[FI, PILI] = N'YtrllLl tr2 .• [P1L2' F2]' (5.6) 

The third, fourth, and fifth terms of Eq. (5.6) vanish 
since 

trl .• IL[FI, H f ] = -trl .• ~, Hf]F1 = 0, 

trl .• IL[FI, PIL] = -trl .• ~,PIL]FI = 0, 

tr1.2 .• ILI[P1L2, F2] = -trl.2 .• [P1L2' ILI]F2 = O. 

We evaluate the second term of Eq. (5.6) with the 
help of the anticommutation relations in Eq. (2.1), 

~, h(l)] = hwo[O" + /, 0" to"] 
t = hwo(o" - 0" ) == -hw06. (5.7) 

When we substitute our expansion for FI and Eq. 
(5.7) in Eq. (5.6), we obtain 

ih(a/at)«IL) + -yN-yil) + nwo«lJ) + -yN-y5) = 0, (5.8) 

where 

o == trl •• (/ - O")x(l, q) == trl (O"t - 0")11"0(1). 

In order to find the equations of motion satisfied 
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by (5) and 5 we multiply Eq. (3.4) for Fl by the 
operator 5 and take the trace over atom one and 
the oscillator coordinate, 

ih(ajat)(trl .• 5FI) + trl.. 5[FI, h(I)] + trl .• 5[FI, HI] 

+ "I trl .• 5[Fl. J.lp] = tr1,2 .• MpJ.l2' F2]' (5.9) 

The third and fifth terms vanish because 

trl .• 5[Fl, H,] = -trl .• [5, HI]Fl = 0, 

trl.2 .• 51[PJ.l2, F2] = -trl.2 .• [PJ.l2, 51]F2 = O. 

We need the following commutator relations to 
evaluate the remaining terms: 

[5, h(I)] = hwo[ut - U, O'tO'] 

= hwo(ut[ut, u] - [u, ut]u) 

= hwo(-O'tO'0 - Uou) = -hwoJ.l, (5.10) 

[5, J.I] = [(O't - u), (u t + 0')] = [/, u] - [0', O't] 

= -2[0',O't] == -2uo, (5.11) 

where we used 
tot 

O'U =u, ° 0'0' = U. 

When Eqs. (5.10) and (5.11) are substituted in 
Eq. (5.9), we obtain 

ih(ajat)(trl .• ~FI) 

= -hwo trl .• J.lFI - 2"1 trl .• uOpFl . (5.12) 

We expand Fl to first order in 'YN'Y and we obtain 

ih(ajat)«5) + 'YN'Y5) = -hwo(~) + 'YN'Yp.) 

(5.13) 

n LXI sin nTe-i(ijTI(t - T)ei(ijT dT 

= ilirlN,,{ 1'" sin rlT(p.(t - T)e-i(ijT pet - T)ei(ijT 

+ (J.I(t - T»e- i
(ij

T7I"0(1, t - T)ei(ijT] dT 

= ilirlN'Y[i'" sin nTP.(t - T)e-i(ijT pet - T)ei(ijT dT 

+ 71"0(1, t) i'" sin rlT(J.I(t - T» dTJ. (5.16) 

Since p.(t) and 71"0(1, t) satisfy homogeneous equa­
tions, the only time I(t) is nonzero is when there 
are nonzero values of p. and 71"0 present initially. 
Practically, in most cases I(t) is of little consequence 
and we will usually neglect its contribution to 71"1(1, t). 
We conclude this section with a discussion of perhaps 
the only important case where it is not permissible 
to ignore I(t). An examination of the SOFA shows 
that if p is initially diagonal it remains diagonal 
and there is no interaction. When Eq. (4.16) with 
I(t) = 0 is substituted in Eq. (4.5), we see that 
if p is diagonal initially it remains diagonal and 
there is still no interaction. For instance, if we start 
the system with a population inversion but with 
the off-diagonal matrix elements zero, nothing 
happens. However, if initially there is a small 
particle-field correlation present, we can get the 
interaction started. We then have 

71"1(1, t) = -li-lrl { sin rlTe-i(ijTI(t - T)ei(ijT dT, 

I(t) = iliN'Yp.(t)p(t), 
and thus 

We find a single second-order equation for J.I by 
eliminating 5 from Eqs. (5.8) and (5.13), trl 0'°71"1(1, t) 

il(J.I)jat2 + W~(J.I) + 'YN'Y(a2p.jat2 + W~P.I) 
= -2'Y1i-1wo«P)(uO) + 'YN'Y trl u°7l"1(1». (5.14) 

When we multiply Eq. (4.5) by J.I and repeat the 
same steps that led to Eq. (5.13) we obtain 

a2(J.I)jat2 + w~(J.I) 
= -2'YIi-Iwo«P)(uC) + 'YN'Y trl u°7l"1(1, t». (5.15) 

We finally obtain the equation of motion for p. by 
substracting Eq. (5.15) from Eq. (5.14), 

(5.3) 

We have now determined I(t) in terms of p and 
(p.). We calculate the contribution of I(t) to 71"1(1, t) 
by substituting Eqs. (5.2) and (5.3) in the last 
term of Eq. (4.16), 

= -iN'Yrl { sin rlTP.(t - T)(UO(t - T» dT 

~ -iN'Yrl(uO(t» { sin rlTP.(t - T) dT. (5.17) 

The last line of Eq. (5.17) results from the fact 
that (UO(t» is slowly varying compared with woo 

When Eq. (5.17) is substituted in Eq. (5.15) with 
(p) = 0, we obtain 

a2(p.)jat2 + w~(p.) = +2i("{N"{)2OwO(h)-1(UC(t» 

X { sin rlTP.(t - T) dT. (5.18) 

In Eq. (5.18) we showed how an initial correlation 
p.(0) gives rise to off-diagonal matrix elements of 
p; i.e., (p.). It is important to observe that the right-
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hand side of Eq. (5.18) depends on only diagonal by Eqs. (5.8) and (5.13) with j1 = 0, 
elements of p. Once (!J.) starts to grow, the SCFA 
becomes the valid description of the process. ih(a(!J.)/at) + liMo(o) = 0, (5.8') 

VI. REPRESENTATION BY MOMENTS 

We derived the equations of motion satisfied by 
our model correct to order ('YN'Y?, and we explicitly 
solved the equations for particle-field correlations 
which appear in second-order in terms of the one­
particle density matrix p and the first and second 
moments of the electromagnetic field. For con­
venience we collect the equations representing the 
complete theory with let) = 0, 

ih(ap/at) + [p, h(l)] + 'Y(p)[p, !J.] 

ih(a(o)/at) + liMo(!J.) 

= 4(hwofl«P)(h(t) + 'YN'Ytrl h(l)'Il"l(l, t», (5.13') 

where (thwo)O"c :; -h(l). The two first-order equa­
tions are equivalent to a single second-order equation 
for (!J.), 

a2(!J.)/ae + w~(!J.) 
= (4'Y/h2)«p(t»(h(t» + 'YN'Y trl h(l)'Il"l(l, t). (6.2) 

We obtain the first-order equation for (h(t» when 
we multiply Eq. (4.5) by the operator h(l) and take 

(4.5) the trace over atom one, 

ih(a(h(t)/at) + trl h(l)[p, h(l)] 

= h- 1 i~ cos flre-il"'[p(t - r), !J.]eiWTBR(t - r) dr 

- h- 1 1~ sin flre-iWT[p(t - r), !J.]eiWTBr(t - r) dr, 

BR = (N'Y)-1«P2) - (p)2) - hwo/2, 

N'YBr = fl(t(pq + qp) - (p)(q» , (4.16) 

a(p)/at + fl2(q) = 0, (3.12) 

a(q)/at - (p) = N'Y(!J.) , 

a(p2)/at + fl2(qp + pq) = 0, 

(3.13) 

(A3) 

a(q2)/at - (qp + pq) = 2NY(!J.)(q) , (A4) 

a(qp + pq)/at - 2«p2) - fl2(q2» = 2N'Y(!J.)(P). (A5) 

Since the trl p = 1, and p = pt, Eq. (4.5) represents 
three first-order differential equations for the three 
functions needed to specify p. The SCF A consists 
of five first-order differential equations, three for p, 

one for (p), and one for (q). The correct second-order 
theory represented by the above equations consists 
of eight first-order equations, three for p, two for 
the first moments (p) and (q), and three for the 
second moments (p2), (q2), and (qp). The non­
linearity has increased from the quadratic (p)p of 
the SCFA to cubic terms such as (P)2p in Eq. (4.16). 

We find it useful to represent the operator equa­
tion, Eq. (4.5), as three first-order differential equa­
tions for three c-number functions. The most natural 
choices are the traces of the operators, !J., 0, and O"c, 

trl !J.p = Pab(t) + Pba(t) , trl op = Pab - Pba, 

trl O"C P = - (Paa - Pbb)' 
(6.1) 

The equations of motion for (!J.) and (0) are given 

= -'Y(P) trl h(l)[p, !J.l] 

- 'Y(,,(N'Y) trl h(l)[!J.l' 'Il"l(l, t)], 

ih(a(h(t»/at) = 'Y(P) trl ([h(l), !J.l]P) 

- 'Y('YN'Y) trl ([h(l), !J.]'Il"l(l, t), 

where [h, !J.l = hwoo. 

(6.3) 

The SCF A can be written as five first-order 
differential equations or two second and one first­
order differential equation, 

a2(!J.)/at2 + w~M = (4'Y/h2)(P)(h(t» , 

a2(p)/ae + fl2(p) = -N'Yfl2(!J.), (6.4) 

a(h)/at = -'Y(p)(a(!J.)/at) , 

where we used Eq. (5.8). Since the time variation 
of (h(t» is slow compared to Wo we can regard the 
SCF A intuitively as two coupled oscillators, one 
of which has a slowly varying coupling constant. 

To complete our representation of the theory 
correct to order ('YN'Y)2 in terms of moments, we 
must evaluate trl h(l)'Il"l(1, t) in terms of moments. 
We multiply Eq. (4.16) by the operator h(l) and 
take the trace over atom one, 

trl h(l)'Il"l(l, t) 

= h- 1 1~ cos flr{trl h[p(t - r), !J.]}BR(t - r) dr 

- h-' 1~ sin flr{tr, h[p(t - r), !J.]}Br(t - r) dr 

= _h-1 1~ cos flr(hwo) tr, (op(t - r»BR(t - r) dr 
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1'" a 
= i 0 cos rlrBR(t - r) at (p.(t - r» dr 

- i 10'" sin rlrBj(t - r) :t (p.(t - r» dr. (6.5) 

We finally obtain the following equation for (p.(t» 
correct to order ('YN'Y)2: 

a:~L + w~(p.) = ~1 [ (P)(h) + 'YN'Yi 

X (10'" cos rlrBR(t - r) :t (p.(t - r» dr 

- 10'" sin rlrBjCt - r) :t (p.(t - r» dr) J. (6.6) 

We evaluate hwo tr101rl(l, t) in a similar fashion 
and we obtain 

a(h) + (P) a(p.) = -8h-1 ( N ). 
at 'Y at 'Y 'Y 'Y ~ 

X [10'" cos rlr Cos wor(h(t - r»BR(t - r) dr 

- 10'" sin rlr cos wor(h(t - r»Bj(t - r) drJ. (6.7) 

The second-order differential equation, Eq. (6.6), 
and the first-order differential equation, Eq. (6.7), 
are completely equivalent to the three first-order 
equations represented by the oper1l-tor Eq. (4.5), 
and are frequently easier to treat. 

We obtain the equations of motion for macroscopic 
quantities from our microscopic variables with the 
following table: 

Electric field intensity E(t) rv - V-l(p(t» 

Electric dipole moment M(t) rv N'Y Vl(p.(t» 

Energy of the atoms Wet) rv N(h(t». 

The equations of motion of the SCF A in macroscopic 
variables are identical to those studied by Jaynes 
and Cummings. 2 If we express Eqs. (6.6) and (6.7) 
in macroscopic variables we see the only variables 
that appear in addition to E(t), M(t), and Wet) are 
the second moments of the electromagnetic field, 
(p2), (l), and (pq), which are also proportional to N. 

VII. DISCUSSION 

We have shown that the problem of N two-level 
atoms interacting through the electromagnetic field 
in a lossless cavity requires the diagonalization of 

matrices of tremendous dimensionality even in the 
lowest order of perturbation theory. If the initial 
particle-field correlations are of order 'Y N 'Y or less, 
we find the solution of the problem to order ('YN'Y)2 
is the SCF A plus higher terms. The SCF A consists 
of five first-order differential equations. The equation 
of motion for p correct to order ('YN'Y)2 is given by 
eight first-order differential equations. The three 
additional equations are required because of the 
occurrence of the three second moments of the 
electromagnetic field. The maximum nonlinearity 
in the SCF A is quadratic, while the higher order 
theory is cubic. 

Both the SCF A and the present theory are in­
variant under time reversal; i.e., no assumptions 
are made that wipe out any dynamical information. 
Our only assumption is that there is an initial lack 
of correlation. In a future publication we will show 
that some of the terms of order ('YN'Y)2 display an 
irreversible behavior that corresponds to a fre­
quency-dependent damping correction to the SCF A. 
This term might be larger than the small phenom­
enological damping constants that are frequently 
introduced ad hoc to represent losses. This is why 
we avoided introducing any damping constants and 
used a lossless cavity. In addition, the SCF A is 
bounded and perfectly meaningful in a lossless cavity. 

Weare now carrying out the Doppler broadening 
case which corresponds to considering wavelengths 
that are of the dimension of the cavity and smaller. 
A generalized SCF A which includes the center-of­
mass motion is still valid. 

APPENDIX 

We now derive the equations of motion for (p2), 
(q2), and (pq) which appear in the second-order 
equation of motion for p. 

To find the equation of motion for (p2) we multiply 
Eq. (3.10) by p2 and take the trace over the reservoir 
variable, 

ih(a/at)(p2) + !rl2 tr. p2[R, q2] = O. (AI) 

The trace is 

-tr. [P2, q2]R 

= -2 tr. {pq[p, q] + [p, q]qp} 

= 2ih tr. (pq + qp)R. (A2) 

When Eq. (A2) is substituted in Eq. (AI) we obtain 

(a/at)(p2) + rl2(qp + pq) = O. (A3) 

We proceed in the same manner to find the equa-
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tion of motion for (q2) and we obtain 

ih(a/at)(q2) + ! trQ l[R, p2] = N,,(p.) trQ q2[P, R], 

ih(a/at)(q2) - ih(qp + pq) = N"(p.) tr. q2[P, R], 

which becomes 

(a/at)(q2) - (qp + pq) = 2N"(p.)(q). (A4) 

In Sec. IV we need the equation of motion for 
(pq) which can be obtained from (qp + pq) since 

(qp + pq) = ih + 2(qp). 

We find the equation of motion for (pq + pq) by 
multiplying Eq. (3.10) by (pq + qp) and taking 
the trace. The result is 

(a/at)(qp + pq) - 2«P2) _ fl2(q2» 

= 2N"(p.)(P). (A5) 

JOURNAL OF MATHEMATICAL PHYSICS 

Equations (A3), (A4) , and (A5) constitute three 
first-order, linear inhomogeneous equations for the 
three second moments of the electromagnetic field, 
(p2), (q2), and (pq). In general, if we go to nth 
order in "( N "( we find a set of first-order inhomo­
geneous linear equations for the nth moments. The 
inhomogeneities depend on moments of lower order 
than the nth. 

It is important to note that even if all the second 
moments are zero initially they will grow to nonzero 
values because the inhomogeneous terms depend on 
(p), (q), and (p.). 

The eigenfrequencies of the homogeneous equa­
tions for (q2), (p2), and (pq) are 0, ±2ifl. Since 
these frequencies are prominent in the inhomo­
geneous terms, the second moments are strongly 
coupled to the SCFA quantities (p), (q), and (p.). 
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It is shown that for a wide class of nonlinear wave equations there exist no stable time-independent 
solutions of finite energy. The possibility is considered whether elementary particles might be oscil­
lating solutions of some nonlinear wave equation, in which the wavefunction is periodic in the time 
though the energy remains localized. 

1. INTRODUCTION 

IN an attempt to find a model for extended elemen­
tary particles, as opposed to singular point 

particles, Enz1 has recently considered the non­
linear equation 

\/20 - (1/c2)(a2 0/at2) = t sin 20, (1) 

which is derived from the variation principle 

6 J [~(~~r - (VO)2 - sin2 0] d3r dt = O. (2) 

OCr, t) is a c-number wavefunction which is required 
to be free of singularities for all rand t. In the 
one-dimensional case (\/2 replaced by a2/ax2) Enz 
showed that (1) has time-independent solutions 

1 U. Enz, Phys. Rev. 131, 1392 (1963). We have taken 
Enz's constants K and A both equal to 1, which amounts to 
a suitable choice of units of length and energy. 

where the energy is localized about a point on the 
x axis; if we further require that the solution be 
stable with respect to small deformations then only 
certain discrete energy values are permitted. In 
addition these one-dimensional solutions possess 
certain symmetry and topological properties which 
Enz suggests might correspond in the three-dimen­
sional case to such discrete quantum numbers as 
charge or parity. 

These suggestive results of Enz for the one-dimen­
sional case then lead us to consider the following 
problem: Can (1) or some similar nonlinear equation 
have stable, time-independent, localized solutions in 
three dimensions? If such solutions exist then it 
would be an attractive hypothesis that the allowed 
energies correspond to the rest energies of elementary 
particles. 

The answer given to the above question by this 
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tion of motion for (q2) and we obtain 

ih(a/at)(q2) + ! trQ l[R, p2] = N,,(p.) trQ q2[P, R], 
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which becomes 
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In Sec. IV we need the equation of motion for 
(pq) which can be obtained from (qp + pq) since 

(qp + pq) = ih + 2(qp). 

We find the equation of motion for (pq + pq) by 
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the trace. The result is 
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where the energy is localized about a point on the 
x axis; if we further require that the solution be 
stable with respect to small deformations then only 
certain discrete energy values are permitted. In 
addition these one-dimensional solutions possess 
certain symmetry and topological properties which 
Enz suggests might correspond in the three-dimen­
sional case to such discrete quantum numbers as 
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sional case then lead us to consider the following 
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would be an attractive hypothesis that the allowed 
energies correspond to the rest energies of elementary 
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:paper is no. The equation 

\12 B - (l/c2)(a2 Bjae) = !r(B), 

derived from the variation principle 

o J [~(~~r - (VB)2 - f(B)J dar dt = 0, 

so that 11 + 312 = 0 has only the trivial solution 
11 = 12 = 0, giving B = O. (Our result here is not 

(3) applicable to the one-dimensional case where Enz 
does obtain stable solutions. In one dimension we 
obtain E~ = Xl1 + 12/X yielding 11 = 12 on dif­

(4) ferentiation, which gives no contradiction.) 

will be proved to have no stable, time-independent, 
localized solutions for any f(B). In particular, Enz's 
equation (1) with f(B) = sin2 B has no such solutions. 
By "localized" solution we shall mean one where 
f (VB)2 dar and J f(B) d3r converge when the in­
tegrals are taken over all space. 

2. PROOF 

If B is a function of r only, we can replace (4) 
by oE = 0 with the energy E given by 

A necessary condition for the solution to be stable 
is that the second-order variation 02E ~ O. Suppose 
B(r) is a localized solution of oE = O. Define B~(r) = 
B(Xr) where X is an arbitrary constant, and write 
11 = f (VB)2 dar, 12 = f f(B) dar. 
Then 

E~ = J [(V B~)2 + f( B~)] dar 

= IdX + la/X3 

on changing the variable of integration from r to 
Xr; whence 

(dE~/dXh_1 = -11 - 312 , 

(d2E~/dX2)~_1 = 211 + 1212, 

Since B~ is a solution of oE = 0 for X = 1, we must 
have 

(d2E>./dA2h_1 = -211 < o. 
That is, 02E < 0 for a variation corresponding to 
a uniform stretching of the "particle." Hence the 
solution B(r) is unstable, proving the theorem. 

In the above proof no restriction was placed on 
the sign of f(B). In Enz's equation (1) we have 
f(B) = sin2 B 2': 0, which means that the energy 
density has the desirable feature of being everywhere 
positive. However it is interesting to note that if 
f(B) 2': 0 then oE = 0 has no nontrivial localized 
solutions at all, either stable or unstable. For in 
this case both 11 and 12 are necessarily nonnegative 

We can easily extend the above proof to certain 
cases where we have a complex, multicomponent 
wavefunction 1/tA rather than the real scalar func­
tion B; the superscript A denotes some tensor or 
spinor index. For example we can carry through 
the above proof for wave equations derived from 
the variation principle 

,. 

where CAB is an arbitrary positive definite Hermitian 
matrix, and g'" the usual metric tensor (t, K = 0, 1, 
2, 3). If CAB is not definite, or if the coefficients of 
(a1/t*A /ax') (a1/tB lax") are not of the simple product 
form CABg'·, then the condition for stability is no 
longer 02 E ~ 0 and the proof fails. 

3. DISCUSSION 

Weare thus faced with the disconcerting fact 
that no equation of type (4) has any time-indepen­
dent solutions which could reasonably be interpreted 
as elementary particles. Some possible ways out of 
this difficulty are: 

(a) We could take a Lagragian in which the 
derivatives occur in higher powers than the second. 
For example, with the form [(VB)2 - (l/c2)(aB/at/]" 
the nonexistence proof of Sec. 2 fails for n > i. 
Such a Lagrangian, however, leads to a very com­
plicated differential equation. 

(b) We could consider first-order spinor equations, 
such as 

where 1/t is a Dirac 4-component spinor and 1/tt its 
Hermitian conjugate, a is the usual Dirac matrix, 
and f(1/I\ 1/1) is an arbitrary Lorentz-invariant func­
tion. With a first-order equation of this type, the 
condition for stability is no longer 02E 2': 0, but 
is now very complicated, and the author has been 
unable to prove or disprove the existence of stable 
time-independent solutions of (5) for general func­
tions f(1/It, 1/1). 
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(c) Quantization of the field equations by replac­
ing the wavefunction by an operator satisfying some 
postulated commutation relations. Quantized equa­
tions of type (5) have been investigated extensively 
by Heisenberg et al.,2 who find particle-like solu­
tions. 

(d) Elementary particles might correspond to 
stable, localized solutions which are periodic in time, 
rather than time-independent. 

We shall confine ourselves here to a consideration 
of Possibility (d), that elementary particles are 
oscillating localized concentrations of energy. We 
know experimentally3 that a particle of momentum 
p has an associated de Broglie4 wavevector k = pjn; 
relativistic invariance then suggests that a particle 
of mass m at rest should have a de Broglie frequency 
w = mc2/n. If elementary particles correspond to 
stable periodic solutions of some nonlinear wave 
equation, then we could possibly identify the fre-

2 H. P. Duerr, W. Heisenberg, H. Mitter, S. Schlieder, 
and K. Yamazaki, Z. Naturforsch. 14,441 (1959); W. Heisen­
berg, Proceedings of the 1960 Annual International Conference 
on High-Energy Physics at Rochester (Interscience Publishers, 
Inc., New York, 1960), p. 851. 

3 C. Davisson and L. H. Genner, Phys. Rev. 30, 705 (1927). 
4 L. de Broglie, Phil. Mag. 47, 446 (1926); Ann. Phys. 

(Paris) 3, 22 (1925). 

quency of this oscillation with the de Broglie 
frequency. 

A particularly simple form of periodic solution 
is one where the structure rotates at a constant 
angular velocity w about a fixed direction, say the 
Z axis; i.e., the wavefunction is a function of x', 
y', Zl, where 

x' = x cos wt + y sin wt, 

y' = -x sin wt + y cos wt, 

z' = z. 

Then the variation principle (4) is equivalent to 

5 J [(V'Ol - :: ILOl 2 + f(O) ] d
3r' = 0, (6) 

where 
L = -i[x'(ajay') - y'(ajax')]. 

However the condition for stability of solutions 
is now very complicated, and the author has been 
unable to demonstrate either the existence or non­
existence of stable solutions of Eq. (6). 
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The purpose of this note is to demonstrate the usefulness of the topological concept of the tree sets 
introduced into any Feynman graph. We demonstrate here a relationship between certain functions 
appearing in two different forms of parametrized Feynman amplitudes by using the properties of the 
tree sets and some purely determinantal manipulations. As another exposition, we also present an 
alternative proof of a theorem due to Nakanishi by using only the concept of tree sets with almost no 
algebraic manipulation involved; the proof in this case is seen to be particularly simple and lucid. 

I. INTRODUCTION 

By considering an arbitrary Feynman graph con­
sisting of some external lines, internal lines, 

and the vertices, one can write down the corre­
sponding Feynman amplitude in the form of a 
multiple integral with respect to the basic mo­
menta. That the integral is, in fact, independent 
of the particular choice of the basic momenta is 
well known. These sets of possible basic momenta 
correspond to topological choices of different sets 
of independent loops (or closed paths) each con­
ducting a circular flow of momentum. The integral, 
for mathematical convenience, is usually parame­
trized by the well-known Feynman formula of inte­
gration; the parametrized form is very useful, par­
ticularly for the study of analyticity properties of 
Feynman amplitudes. The functions that appear 
in the integral, as a consequence of parametrization, 
have some interesting topological properties. This 
is, of course, what one should expect since a Feyn­
man graph determines uniquely a Feynman inte­
gral, and such a one-one correspondence would 
naturally appear in the algebraic forms even after 
some integral transformations. If the integral trans­
formation is an appropriate one-Feynman parame­
trization certainly is-then the topological properties 
may appear in a very transparent manner in the 
functions involved in the expression. Thus, in handl­
ing a Feynman amplitude, and especially in the 
parametrized form, one should be able to take ad­
vantage of the topological properties imbedded in 
the graph. This does not mean that the topological 
concepts are, in general, more concise or transparent 
than the ordinary algebraic manipulations or trans-

* Research supported by ONR under the grant No. 
R167703. 

t Present address: Department of Physics, University of 
Wisconsin at Milwaukee, Milwaukee, Wisconsin. 

formations. However, a proper, combined use of 
these techniques is sometimes very profitable. 

Among the topological properties of Feynman 
graphs, the concept of tree sets, which are to be de­
fined is a very useful one. The purpose of this paper 
is to show how the topological properties of the 
tree sets can be used to establish relationships be­
tween functions of the differently parametrized 
Feynman amplitudes; we note that although, in 
the past, the tree sets have sometime been used to 
write down certain functions in the parametrized 
Feynman amplitude' the topological properties of 
tree sets have never been explicitly used as a tool 
to establish or to show any relationships between 
different functions. In this note, the terminologies 
used follow closely those of Nakanishi, 2 though our 
notations are somewhat different from his. 

II. SOME DEFINITIONS FOR FEYNMAN GRAPHS 

A Feynman graph is by topological definition an 
oriented linear graph. For any given oriented linear 
graph, r, an incidence matrix3

,4 €, was introduced 
by Poincare as follows: 

Ein = 0, if the internal line j does not initiate 
or terminate at the vertex n, 

Ein = 1, if the internal line j initiates from the 
vertex n, 

and 
Ein = -1, if the internal line j terminates at the 

vertex n. 
A one--one correspondence therefore exists be­
l K. Symansik, Progr. Theoret. Phys. (Kyoto) 20, 690 

(1958); we note here that "tree" was called "skeleton" by 
Symanzik. 

2 Y. Nambu, Nuovo Cimento 6, 1064 (1957). 
3 A. Logunov, I. T. Todorov, and N. A. Chernikov, Zh. 

Eksperim. i Teor. Fiz. 42,1285 (1962) [English trans!': Soviet 
Phys.-JETP 15, 891 (1962)]. 

'I. T. Todorov, Doctoral Dissertation, Joint Institute 
of Nuclear Research Report P-1205, Dubna, 1963. 
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tween the incidence matrix E and the given graph r. 
In dealing with a Feynman graph, a set of basic 
momenta {kd is introduced6

j each basic momentum 
flows along a closed path (or loop) due to conserva­
tion. The set {k l } will be referred to hereafter as 
the base set. Now, if we denote the jth internal mo­
mentum (i.e., the momentum of the jth internal 
line) by qj and the set of external momenta by {Pi} 
then we can write qj as a linear combination of 
{kd and {pd: 

L N 

qj = E Ejlk l + E Aj;p; = K j + Pj, 
Z-I i-I 

or simply, in a compact notation, 

q = [·k + X'p, 
where 

Eji = 0, if the line j does not belong to the 
loop l along which a kl flows, 

Eji = 1, if the line j belongs to and is parallel 
to the loop l, 

and 
Ejl = -1, if line j belongs to and is antiparallel 

to the loop l, 

while AH can take any arbitrary value provided 
momentum conservation at every vertex is satisfied 
(thus X is not unique). It is clear that, unlike E, 
the matrix E introduced here is not uniquely defined 
for a given r, since the choice of the base set {kd 
is not unique while the incidence matrix E is base­
independent. However, once {kd is chosen, then '; 
is uniquely fixed. The different choices of a base 
set {k l } correspond to the possible ways of putting 
(two sets differed only by a permutation are con­
sidered as equivalent): 

{kl' ... ,kd = {q •• , ... ,q.d, (1) 

where {VI, ... , vd is a subset of {I, ... , J} when 
topologically allowed and L is the total number of 
independent loops in a given graph r. Conservation 
of momenta imposes the following condition: 

L = J - N + 1, 

where J is the total number of internal lines and 
N the total number of vertices involved in the 
graph. 

The tree set, T, is now defined as the complement 
of the corresponding base set. That is, 

T. = c{kd., 
where the presubscript c is the usual notation for 

III. THE PARAMETRIZED FEYNMAN AMPLITUDES 

There are different parametrized forms of Feyn­
man amplitudes due to different ways of parametriza­
tion. We shall first consider the form used by 
Logunov et al.' and Todorov5 (originally derived 
by Nambu and Symanzik1

,2 )but written here in 
a different notation: 

F = C 11 ... 11 IT dot j • 5(1 - Ii) , 
o 0 i-I a; h2(a)[Q(a, p) + iO]2N-J-2 

(2) 

where C is a constant and {ai} is the set of Feynman 
parameters, and 

J 

Ii == Eaj, 
;-1 

Vj : aj ~ O. 

The function h(a) is defined by 

h(a) = det ii, 
with 

and 
J 

h .... , = E ailEi .. Ei,,'· 
i-I 

The function Q is defined by 

Q = - E aim; - - , J 2 1 1
0 pi 

i-I h pT Ii 
where 

p = {PI' ... ,PN-d· 

(3) 

That the definition (3) used by Logunov et al.' 
is precisely the one given by Symanzik1 can be seen 
easily as follows: 

Let S .. be the set of all the internal lines attached 
to the vertex n, thus for n ¢ n' we have 

jEt: S" ('\ SA' implies Ein· EiA' =0 (4) 

and 
jE SA ('\ SA' implies Ein· fin' = -1, (5) 

since if j is an incoming line with respect to n, then 
j must be an outgoing line with respect to n', and 
vice versa. Therefore, (3) becomes simply 

(6) 

the complement of a set. V denotes the particular and 
choice of a base set. (7) 

6 N. Nakanishi, Suppl. Progr. Theoret. Phys. (Kyoto), 
No. 18, 1 (1961). which is the form used by Symanzik. 
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However, a more popular form of the parametrized 
Feynman integral is the one derived first by Chis­
holm.6 In the form used by Nakanishi, we have 

11 11 J 5(1 - &) 
F = Coo J.1 da; U2(V _ iO)J-2L' (8) 

with 

(9) 

where {JI} = {JlI' •. . , JI L} has the meaning of choos­
ing the set {q." q,., ... , qn} as the basic momenta 
(or simply the base). The summation in (9) runs 
over all the possible choices of the basic momenta 
for a given Feynman graph. The V function may 
be expressed in several different ways,3,7 however, 
since it is not of our present concern we give only 
the one due to Nakanishi: 

V = t a;m~ - E [Uce(t a;£;ep ;)2], 
;-1 VeEr ;-1 

where e denotes an arbitrary, closed loop not neces­
sary belonging to a single basic momentum. The 
Uce denotes the U-function, as defined by (9), for 
the graph with e reduced (Le., a; = 0 for Vj E e). 

IV. THE DERIVATION 

Originally, (2) was derived by Symanzik by means 
of Fourier transformation, while (8) was obtained 
by integrating out the basic momentum variables 
of the parametrized Feynman integral. They have 
been shown to be equivalent, e.g., by Nakanishi.7 

Here we attempt to show that such an equivalence 
can be also demonstrated by using the topological 
concept of tree sets. In the following proof only some 
determinantal manipUlations are used together with 
the properties of tree sets: 

Proposition: 
J 

U = h IT a; (10) 
i-I 

Proof: Let us label the set of internal lines of the 
graph r by 

{JI;} = {JlI' .•. ,JlL, JlL+I, '" ,JlJ} 

such that the subset {JI,} = {Jl1' '" , JlL} is a base 
and therefore the subset {JI.} = {JlL+I' .•. , JlJ} 
is a tree (with respect to this base). 

From (9), we have immediately, 

( 

J )-1 
U fla; 

.-1 

I R. Chisholm, Proc. Cambridge Phil. Soc. 48, 300 (1952). 
7 N. Nakanishi, Progr. Theoret. Phys. (Kyoto), 26, 337 

(1961). 

J 

= E IT a~!. 
VI .. IEr '-L+I 

But, J - L = N - 1, thus one obtains: 

( 

J )-1 
U JIa; 

,-1 

N-1 

E ITa;:. 
all trees n-l 

(11) 

On the other hand, determinant theory gives: 

where h} = hI, ... ,'YN-d = P{l, ... , N - I}, 
P = Permutation, SI'y 1 = (-) .1>(">' where P is the 
number of transpositions involved in P. 

Substituting (2) into (12) gives: 

where {I'} = {JLI, •.. , JLN-d with 1'" = 1, ... , J. 
We note that, in principle, any kind of repetition 
of elements is allowed for {I'}, e.g., one might have 

{I'} = {4, 10, 6, 3, 6, 3, 3} 

for J = 11 and N = 8, say. However, it will be 
shown that there is actually no repetition of ele­
ments in {JL}. 

Let us rewrite (13) into the form, 

h = E [(ITap')'IT Epa" E (SI"I IT ElAn"n)] 
VII') .. -I "-1 VI"I ,,-1 

(14) 

therefore we conclude: 

Ii 
{

¢O, if 
II'I 

=0, if 3n : 1'" EE S". 

'tin : 1'" E S .. , (15) 

This means that the part of the graph r which has 
a nonzero contribution to h is the totality of trees 
provided if we can show that there is no repetition 
of elements in {I'} and further that h is independent 
of our choice of the N - 1 vertices. First, since the 
product: 

N-1 

IT EI" 

implies topologically a pairing of 

1'1 for n = 1, 

1'2 for n = 2, 

JLN-l for n = N - 1, 
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any repetition of elements in {.u} is impossible. 
Because, if there is a repetition, say, 

.un- = .un'" 

then in the summation 

there are two terms: 
N-1 N-1 

0{,),') II E"n'Yn' and 0{ 1''') II E"n')'n" 
,,-1 ,,-1 

which cancel each other exactly because 

b'} = Pn'n" bill, 

where P"'n" is the transposition operator for vertices 
n' and nil. Further, repetitions more than twice are 
definitely impossible since an internal line is at­
tached to two vertices only. This proves that there 
is no repetition of elements in {.u}. 

Rewrite (14): 

h = ~ [IT a;.l ~ (0{')') IT E".E"n'Y')]' (16) 
VI,,) n-1 V{,),) n-1 

By introducing a matrix 

E",N-1N -l f p.N- 1 l 

h= 

EP.N-1N-IE"'N-l.N-l 

(17) 

hN - 1 ,N-1 

o 
10 
1 

1 

1 

1 

1 
hN-1,l hN-1,N-l 1 0 _______________ 1 __ 

1 1: 1 

hll + () 

1 l' = - 1m 
N ~~O 

we have from (16) 

Since (15) shows already that only "tree sets" 
give nonzero contributions to det tT{,,), thus by con­
sidering now only the "tree" graphs, we have 

N-1 

II (Eun,,)2 = 1 
n=1 

for the diagonal product of (17) while the off­
diagonal products are all zero since we are dealing 
with only tree sets. This leads to 

det tT{,,) = 1, for a tree set, {.u}. (18) 

Therefore, for each different tree set we have a dif­
ferent set of elements involved, yet (18) will hold 
just the same. Thus, we have 

N-l 

h = ~ II a~!, 
Vtree, n-l 
{,,)Er 

(19) 

then (11) and (19) lead directly to the proposition. 
However, we note here that since the product 

sign in (19) runs from n = 1 to N - 1 only, the 
proof is not quite complete without showing his, 
indeed, independent of the choice of the N - 1 
vertices out of the total N vertices in the graph. 
This can be shown5 as follows: 

hN - 1 ,l hN - 1 ,N-l + () () 
--------------------------~--

1 1 1: N 



                                                                                                                                    

TOPOLOGICAL PROPERTIES OF FEYNMAN GRAPHS 1259 

1 l' = - 1m 
N a~o 

1 N 

: - L: hu 
1 
1 

1 
1 

1 

1 

1 

1 

1 N 

hN- 1,N-1 + 5 : - L hN- 1,. 
1 i=1 __________________________ 1 ________ _ 

1 1 

1 l' = - 1m 
N a~o 

1 1 

N 

1 

1 

N 

1 
1 1 

Lhi1 + 5 Lh'2 + 5 
1=1 i-] 

hll + 5 h12 

= ~ lim! h21 h22 + 
N a~o 5 

where in the last three steps we have used the 
properties: 

N N 

Vi : L hi; = 0 and Lh;. = O. 
;-1 

Therefore, the function h(a) is seen to be independent 
of the choice of the N - 1 vertices involved in (19). 
This completes the proof. Q.E.D. 

V. AN ALTERNATIVE PROOF OF A THEOREM 
OF NAKANISHP 

As another example of exposition of the tree sets, 
we present here an alternative proof of a theorem 
due to Nakanishi (the notation used below is the 
same as that of Ref. 3, except we use CP to denote 
a path). 

Propositian: For three arbitrary external lines A, 
B, C, in a Feynman graph r, the following re­
lation holds: 

(AC) + (BC) (A B) 2 ~ c(tO ( ) 
7] 7] - 1/ = L..J 1/ \Tk nAnB (20) 

k 

5 

h1N 

h2N 

[and two other equations obtained by cyclic permu­
tation of the indices of (20)], where nA and nB are the 
vertices of the external lines A and B, respectively. 
The 1/ functions are defined by 

1/(AB) = W(AB) IU, 

where W(AB) is the U-function of the modified graph 
obtained from r by identifying the two external 
vertices nA and nB of r, but leaving other things 
unchanged. 

Proof: To make the proof more transparent, we 
introduce here a notation t to denote the operation 
"to shrink ... " which means to reduce a line to a 
point (or more generally, to delete a set of lines and 
identify their end vertices, respectively). Thus, the 
right-hand side of (20) can be written as 

2 L 1/
C

( t (»k(nAnB). (21) 
V J)o8sible Ie 

Further, by definition, we have 
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(22) 

which is very convenient for the following purpose. 
Now, in terms of tree graphs (Le., subgraphs of r 
that correspond to the different tree sets) we will 
show that the function W(ABl can be written as 

(23) 

The proof proceeds as follows. Since W(ABl is 
just the U function3 of renA = nB) obtained from 
r by merely identifying the two external vertices 
nA and nB, W(ABl contains a term formed by the 
product of all the elements of a tree obtained from 
renA = nB). The summation over all the tree sets 
yields precisely the function W(ABl. 

For a given tree (any tree), T, there are two pos­
sibilities: 

either 

(i) 6\(nBnC) (\ cT ~ cf>, (c: complement) 

which obviously contradicts the definition of a tree. 
Similarly, we have 

3 <P(nAnC) C T ~ <P(nBnC) C T. 

This means the two summations on the right-hand 
side of (23) give exactly W(ABl provided we can 
establish 

(25) 

But (25) is a self-evident property of a tree set, 
thus Q.E.D. 

Finally, rewrite (23) into the form: 

'I/(ABl = ~ 'l/A( 1 <P1;(nBnC» + ~ 'l/B( 1 <Pk(nAnC» 
k k 

(26) 

and two other similar equations (obtained by cyclic 
permutation of the indices). That (26) leads directly 
to (20) is obvious. Q.E.D. 

Note added in proof: Using Eq. (23) one can 
immediately obtain the following interesting the­
orem: 

or which will be discussed with some other theorems 
(li) <Pk(nBnC) C T, [T: a tree of renA = nB)). in a preprint jointly with Dr. D. J. Kleitman. 

In Case (i), the contribution to W(ABl is zero. In 
Case (ii), the condition <PI; (nBnc) = cf> does not 
effect the terms contributed to W(ABl. Further, here, 
a "tree"guarantees 

~ <P(nAnC) C T 

because we are presently dealing with <P1;(nBnC) and 
renA = nB). Thus, 

3 <P(nAnC) ~ 3 a closed path inside T (24) 
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As for any multichannel scattering problem, variational techniques can be utilized in the determi­
nation of the elements of the scattering matrix or of the equivalent network elements for a gyromag­
netic obstacle in a waveguide. As always, however, it can be quite difficult to interpret numerical 
results which in general are neither upper nor lower bounds. A variational bound originally developed 
for the determination of the phase shift for a given angular momentum in a quantum mechanical 
central potential scattering problem is here adapted to the solution of a transversally magnetized, 
lossless ferrite slab in a rectangular waveguide propagating only one mode, the TElo mode. With a 
simple trial function and with the aid of a comparison scattering problem which need not be tensor 
in character (so that the determination of upper and lower bounds is not really difficult), close bounds 
are obtained on cot '7. and cot '70, the cotangent of the real uncoupled phase shifts associated with the 
even and odd standing waves, respectively. The bounds obtained on cot '7. and cot '70 determine 
bounds on the equivalent 11" network. A second variational bound, which can be simpler to apply and 
which can be applied to a wider class of problems, is also developed. This too is an adaption of a 
formalism originally introduced in quantum mechanical scattering problems, and depends upon a 
consideration of the spectrum of the fundamental operator of the theory, the Hamiltonian in the 
quantum mechanical case and an analogue thereof in the electromagnetic case. 

I. INTRODUCTION 

VARIATIONAL techniques for scattering prob­
lems were first developed by Schwingerl in con­

nection with the scattering of electromagnetic waves 
by isotropic obstacles in waveguides. These tech­
niques have subsequently been extended in a variety 
of ways; they have been applied in other fields of 
physics, and in particular to quantum mechanical 
scattering problems, and the domain of waveguide 
problems to which the variational approach is ap­
plicable has been broadened. With regard to wave­
guide problems, the extensions include the develop­
ment by Hauser2 of a variational expression for the 
elements of the scattering matrix for lossy aniso­
tropic' obstacles characterized by non-Hermitian 
electric permittivity and magnetic permeability 
tensors. Independently, Nikolskii3 found extreme 
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IV. V. Nikolskii, Radio Engineering and Electronics 
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functionals for the determination of the reflection 
and transmission coefficients for a nonabsorptive 
anisotropic medium. There has also been a develop­
ment of variational bounds as opposed to simply 
variational principles. Variational bounds for scat­
tering parameters, as for eigenvalue problems (where 
they have long been known), give errors which are 
not only of second order but are of known sign. We 
will consider two variational bounds. 

The first is that due to Kato,4 who developed it 
in a form useful in the partial wave analysis of 
quantum mechanical potential scattering problems, 
a variational bound being obtained on cot (17 - 8), 
where 17 is the phase shift for the angular momentum 
under consideration and () is a parameter chosen for 
convenience. This approach has been extended and 
applied5

•
6 to the scattering of electromagnetic waves 

by isotropic lossless obstacles in a lossless waveguide 
for the case for which only one mode propagates 
and for which the obstacle is described by a scalar 
permittivity EoE(X, y, z) and a free-space permeability 
p.o. The case6 in which the obstacle is symmetric 
with respect to a plane perpendicular to the axis 
of the waveguide can be reduced to two one-channel 
processes, but the unsymmetric case6 is a true two­
channel process which can not be so reduced. 

4 T. Kato, Progr. Theoret. Phys. (Kyoto) 6, 394 (1951). 
6 L. Spruch and R. Bartram, J. Appl. Phys. 31, 905 (1960)' 

R. Bartram and L. Spruch, ibid. 31, 913 (1960). ' 
6 R. Bartram and L. Spruch, J. Math. Phys. 3, 287 (1962). 
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The Kato formalism is limited to relatively 
simple scattering problems because it requires that 
there be some solvable problems of a difficulty 
roughly comparable with that of the original prob­
lem, though the solvable problems can sometimes 
be single-channel problems even when the original 
problem is multichanne1.6 A second disadvantage is 
that one must calculate matrix elements of the 
square of the basic operator, which for quantum 
mechanical problems is the Hamiltonian. To dis­
tinguish this formalism from the second variational 
bound, it will therefore be referred to as the quad­
ratic variational bound. The advantage of the 
quadratic formalism is that, where applicable, it 
can provide both bounds on the scattering param­
eters under consideration. 

We will show that the scattering of electromag­
netic waves by a transversally magnetized lossless 
ferrite obstacle that is not too thick and that is 
located in a lossless rectangular waveguide propa­
gating only the fundamental mode, and is symmetric 
about a plane perpendicular to the direction of 
propagation, and is also symmetric about a plane 
containing the axis of symmetry and the transverse 
dc magnetic field (a magnetically symmetric con­
figuration with the scattering independent of the 
direction of propagation) is a problem sufficiently 
simple for the quadratic formalism to be very use­
fully applied. The adjective "useful" seems ap­
propriate for the problem under consideration since, 
with specific and reasonable parameters, the upper 
and lower bounds obtained on the elements of the 
11' network differ from one another by only a few 
percent; whether or not the adjective "simple" is 
appropriate, other than to indicate that the quad­
ratic formalism can in fact be used to obtain rather 
accurate results, is largely a matter of taste, but 
we note that the waveguide problem corresponds 
to the one-dimensional quantum mechanical scat­
tering of a particle by a second particle bound to a 
center of force, where the potential interaction is 
a 3 X 3 matrix and the wavefunction has 3 com­
ponents. 

There is also available a variational bound formu­
lation7

-
1o which can be very much simpler to apply 

than the Kato formulation, especially at zero energy; 

7 L. Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959); 
117, 1095 (1960). 

8 L. Rosenberg, L. Spruch, and T. F. O'Malley, Phys. 
Rev. 118, 184 (1960). 

9 L. Spruch, in Lectures in Theoretical Physics, Boulder, 
1961, edited by W. E. Brittin and B. W. Downs (Interscience 
Publishers, Inc., New York, 1962), Vol. 4. 

10 Y. Hahn, T. F. O'Malley, and L. Spruch, Phys. Rev. 
128,932 (1962); 130,381 (1963). 

the simplicity originates in part from the fact that 
the basic operator appears only linearly. This 
formalism was developed within the context of 
quantum mechanics and is applicable to a very 
much wider class of problems, including scattering 
by a compound system, largely because there need 
not be any related solvable problems. The relative 
disadvantage of this second (linear) variational 
bound, which will sometimes be referred to simply 
as the variational bound, is that one can obtain 
only one bound on the scattering parameter (or 
parameters) of interest. At zero incident energy, 
this second variational bound formulation super­
sedes the original variational principles. 

The fact that the variational bound is applicable 
to quantum mechanical scattering by systems with 
internal degrees of freedoms suggests that it may 
also be applicable to waveguide problems, for the 
essence of the method lies in the possibility of de­
composing the scattering problem, by a partial wave 
analysis for example, into scattering problems for 
which the scattering is completely characterized by 
a finite number of parameters; the quantum me­
chanical aspect of the problem is not the significant 
feature. In the quantum mechanical case the for­
mulation is particularly simple at zero incident 
kinetic energy, that is, for k = 0, where k is the 
incident wave number. To simplify the discussion 
we will therefore limit our formal analysis of the 
waveguide problem to k = 0, where k is here the 
incident wavenumber along the axis of propagation. 
It is a relatively straightforward matter having 
established the connection at k = ° to establish 
the connection for k ~ 0, even for k sufficiently 
large such that more than one mode propagates. 

We will begin with a few comments on the ferrite 
problem. We will then develop the quadratic vari­
ational bound in a form applicable to this problem, 
and apply it to the case of a uniform ferrite slab. 
We then present the variational bound formalism 
for k = 0. Finally, we briefly discuss the limitations 
of the two variational bound formulations. 

2. FERRITE PROPERTIES AND BOUNDARY­
VALUE PROBLEMS 

Before proceeding, it will be helpful to outline 
the properties of ferrites and the difficulties en­
countered in the solution of boundary-value prob­
lems in which ferrite media are involved. Neglecting 
damping, a ferrite region magnetized and saturated 
by a dc magnetic field, H dc, in the y direction, and 
subjected to rf fields, H, will contain rf flux densi­
ties, B, given by 



                                                                                                                                    

SCATTERING OF WAVES BY FERRITE 1263 

B = JLoJ,J!, 

where 

JL = 0 I o 

and where 

JLOJLI = JLo + h'l Mwo/(w~ - w
2
), 

JLokl = hi Mw/(w; - w
2
). 

(Ia) 

(Ib) 

/-10 is the permeability of free space, 'Y the gyro­
magnetic ratio of the electron, M the saturation 
moment, w the operating circular frequency, and 
Wo = 'YHdc. The tensor form of the equations indi­
cates that an rf H field applied along the x or the z 
axis will give rise to rf components of B along both 
the x and z axes. 

The solution of boundary-value problems in which 
ferrite media are involved is a difficult task. In the 
case of the rectangular waveguide completely filled 
with ferrite where the magnetizing field Hdc is 
perpendicular (pointing in the y direction) to the 
broad face of the waveguide and transverse to the 
direction of propagation, z (see Fig. 1), the modes 
which are independent of y have only an electric 
field, E, component in the y direction and H com­
ponents transverse to E.ll These modes are the same 
as if the waveguide were filled with an isotropic, 
homogenous medium of permeability JLo (JL~ - k~) / JLI, 

insofar as E and B are concerned. The components 
of H in terms of B, obtained from Eqs. (1), are 

Hx = (J.!IBx + ikIBz)[J.!o(J.!~ - kiW\ 

H. = (-ikIBx + JL1Bz)[J.!0(J.!i - kiWI. 

As a consequence of the distortion of the H field in 
the ferrite medium if a normal waveguide mode is 
incident on a semi-infinite ferrite filled section of 
waveguide, an infinite number of modes must be 
excited in order to satisfy the boundary conditions 
on the incident, reflected, and transmitted waves , 

Ey(inc) + Eu(ref) = Ey(trans) 

Hx(inc) + Hx(ref) = Hx(trans) , 

at the air-ferrite interface. The representation in 
terms of a superposition of all possible TEno modes 
leads to an infinite number of equations of slow 
convergence. (For a finite section, the fields will 
consist of forward and backward waves in the slab.) 

11 A. A. Th. Van Trier, Appl. Sci. Res. 3B, 305 (1953). 

-d 
-d t1 

FIG. 1. Magnetized ferrite filled section of waveguide. 

The computation of the reflection and transmission 
coefficients therefore meets with great difficulties. 12 

Sharpe and Heiml3 have found an approximate 
solution for the semi-infinite problem in the case 
where no higher modes than the first propagate 
in the ferrite. The solution for the electric field is 
expressed in terms of a Neumann series obtained 
by iteration of a singular integral equation which 
satisfies the boundary conditions at the interface. 

It has been shownl4 that the scattering matrix 
of microwave junctions containing ferrites satisfy 
the same requirements as that of junctions contain­
ing ordinary scalar media except that the ferrite 
scattering matrix is in general nonreciprocal. For 
scalar media, the scattering matrix is symmetric, 
Snm = Smn. For ferrite media, the asymmetry of 
the permeability tensor describing the medium in­
duces a nonsymmetric scattering matrix S ~ S , mn'-- nm, 

for an asymmetric distribution of obstacles. A dis­
tribution is considered asymmetrical even in the 
case where there is geometrical symmetry, if the 
geometrically similar portions are oppositely mag­
netized. If the ferrite is symmetrically distributed, 
the relationship between incident and transmitted 
fields is independent of the direction of propagation. 
For an N channel waveguide containing lossless 
anisotropic material, since the scattering matrix is 
uni:ary and. in general nonsymmetric, the asymp­
totIC scattermg effects can be described by N 2 real 
independent quantities. If we restrict ourselves to 
the two-channel symmetric case, that is, to a uni­
form waveguide propagating a single mode with 
o?stacles symmetric with respect to a plane perpen­
dICular to the direction of propagation and sym­
metric with respect to the dc magnetic field, the 

:: P. S. Epstein, Rev. Mod. Phys. 28, 3 (1956). 
C. B. Sharpe and D. S. Heim, IRE Trans. Microwave 

Theory Tech. 6, 42 (1958). 
14 G. S. Heller, Proc. IRE, 44, 1386 (1956). 
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number of independent variables is reduced from 
four to two. Then as in the isotropic case, the 
solution can be represented in terms of even and 
odd standing waves, each characterized by one real 
number, the phase shift '1]. (Subscripts e and 0 will 
be used to denote quantities associated with the 
even and odd solutions, respectively, but will be 
omitted wherever the formalism is the same for 
both solutions.) 

3. THE BASIC IDENTITY 

Limiting ourselves to the ferrite system mentioned 
in the Introduction, which we can state more 
formally as the conditions that p.(x, z) = p.(x, -z) 
and p.(x, z) = p.(a - x, z) (a is the wide dimension 
of the waveguide), with similar conditions on E(X, z), 
we will derive our basic relations in terms of the 
magnetic field intensity, H(r), which has two non­
vanishing components, Hz and H.. It might seem 
preferable to use the electric-field formulation, since 
E(r) has only one nonvanishing component, E u, but 
unfortunately, because of the presence of the tensor 
permeability, the boundary conditions at the air­
ferrite interface cannot then be satisfied with a trial 
function consisting of a finite number of modes. 

Assuming a time dependence exp (-iwt), Max­
well's equations are 

V xH = -iwEoEE, 

V xE = iwP.oIlH, 

V·B = 0, V·D = 0, 

where the relative permittivity E is a scalar and the 
relative permeability Il is a Hermitian tensor in the 
ferrite, given by Eq. (lb), and E = 1 and Il = 1, 
the three by three unit matrix, in the rest of the 
waveguide medium. It follows from Maxwell's equa­
tions that 

(2) 

Equation (2) can be rewritten as 

£H = (W
2/C2 

- x)H = (w2N - T - V)H = 0, 
(3a) 

where 

T = _'V2
, (3b) 

V = - W = 'VV· + (1/ E - I)V x V 

x+ [Vel/E)] xV x + (1 - Il)W
2 /C2

• (3c) 

With x, W
2 /C2

, T, and V symbolically identified 
with the Hamiltonian and with the total, the 
kinetic, and the potential energy, respectively, we 

have a (purely formal) connection with the Schr6-
dinger equation. This purely formal connection­
the various quantities do not even have the di­
mensions of energy-simplifies the adaptation of 
the quantum mechanical variational bounds to the 
waveguide case. 

As it must, V vanishes asymptotically since E and Il 
approach 1 asymptotically and since the fields on 
which V operates become divergenceless. The fact 
that V is nonlocal and w dependent, which corre­
sponds quantum mechanically to an energy de­
pendent nonlocal potential, will cause no difficulty 
whatever. In fact, we will never need to use the 
explicit form (3c), but we note for later reference 
with regard to a monotonicity theorem that V has 
a quite simple Il dependence. 

For a TElO mode in a hollow rectangular wave­
guide, the components of the magnetic intensity 
are represented by the following relations for 
propagation in the +z direction, 

Hz = sin (7rx/a) exp [-i(wt - kz)] , 

H. = (7r/ak) cos (7rx/a) exp [-i(wt - kz - !7r)] , 

where 

k = [(W/C)2 - (7r/a?]!. 

Thus, for the space-dependent parts of H, the even 
and odd standing wave solutions have the asymp­
totic forms for z _ co, 

Ho - az sin (7rx/a) [ -sin (kz + 0) 

+ cot ('I], - 0) cos (kz + 0)] 

+ a.(7r/ak) cos (7rx/a) [ -sin (kz + 0 + !7r) 

+ cot ('I], - 0) cos (kz + 0 + !7r)], 

Ho - az sin (7rx/a)[cos (kz + 0) 

+ cot ('1]0 - 0) sin (kz + 0)] 

+ a.(7r/ak) cos (7rx/a)[cos (kz + 0 + !7r) 

+ cot (7]0 - 0) sin (kz + 0 + !7r)], 

(4) 

where ° ::; 0 < 7r (0 is an arbitrary parameter) 
and az and a. are unit vectors in the x and z di­
rection, respectively. 

Consider Ho., for example; we want Ho. ~ 
N sin (7rx/a) cos (kz + 7]0)' where N is an arbitrary 
normalization factor. The choice N = [sin ('1]0 - OWl 
gives the asymptotic form of Hu of Eq. (4). 

We now introduce a trial magnetic field H, which 
is required to behave asymptotically in a fashion 
defined by Eq. (4), but with '1]. and '1]0 replaced 
by 'l]ot and by 'l]ot, respectively. Consider for the 
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moment the case for which J.I and E are continuous 
functions. We then require that H t be continuous 
and that it have a finite first derivative and an inte­
grable second derivative. The further conditions to 
be imposed upon H t will be arrived at below. 

Consider the quantity 

J [H*·.cHt - Ht·(.cH)*] dr, 

with the star representing the Hermitian adjoint. 
We can on the one hand substitute for .c explicitly; 
the terms involving J.I vanish since J.I* = J.I. We can 
on the other hand, by Eq. (2), drop the .cH term. 
We thereby arrive at 

J H*·.cHtdr = - J [H*·V x (e-lV xHt) 

- H,"V X (E-lV xH*)] dr, (5a) 

where the range of integration is over the interior 
of the waveguide. The right-hand side can be 
transformed to give 

J H*·.cH, dr = J [H* x (e-lV xHt) 

- HtX(E-lVxH*)]·dS. (5b) 

Imposing the requirement onHt that (V xHt)tang=O 
on conducting surfaces, the surface integral vanishes 
on the conducting surfaces, and the contribution 
from the asymptotic region is twice the contribution 
from either asymptotic face. Thus, we have 

J H*·.cHt dr = 2k[I + (1r/aW](tab)[cot ('I1t - 0) 

- cot ('11 - 0)], (6) 

where b is the narrow dimension of the waveguide. 
In order to conform to our previous notation, let 

Eq. (6) can now be written 

k[l+ (1r/ak)2] cot ('11 - 0) = k[I + (1r/ak?] cot ('111 - 0) 

- t J U1t·.cuet dr + t J W~·.cW8 dr. (7) 

Consider now the more realistic case of a discrete 
ferrite obstacle, so that e and J.I. are not continuous. 
The volume integral in Eq. (5a) must now be split 
into a volume integral over the interior of the 
obstacle and a second volume integral over the 
remainder of the interior of the waveguide. The 

surface integral of Eq. (5b) now includes not only 
integrals of the conducting surfaces and of the end 
surface, but two integrals over the surface of the 
obstacle, with oppositely directed surface elements 
dS. Since the tangential components of H* and of 
(1/ E) (V x H*) (equal to iweoE*) are continuous, 
these latter two surface integrals cancel if the 
tangential components of H t and of e-lV xHt are 
continuous at the ferrite-air interface, and we arrive 
again at Eqs. (6) and (7). The significant point is 
that the continuity conditions on H t can be relaxed 
at the interface with regard to the requirement on 
the normal component of J.lHt and of V x H t. 

The first two terms on the right-hand side of the 
basic identity [Eq. (7)] constitute a variational ap­
proximation for cot ('11 - 0); the third term is the 
error term and is of the order of the square of the 
error in the trial function. Equation (7) is the 
starting point for the development of both vari­
ational bounds. We consider the Kato formulation 
first. 

4. THE "QUADRATIC" VARIATIONAL BOUND 

A. The Formalism 

Kato's method for obtaining rigorous bounds on 
the error term can with some modification be applied 
to the ferrite case. We obtain upper and lower 
bounds on the error term f w~·.cw, dr, namely, 

_a;l J (.cUet)*·(ep-l.cu't) dr S J w~".cwe dr 

S f:J;l J (.cUet)*·(ep-l.cUet) dr. (8) 

a, is the smallest positive eigenvalue and f:J, the 
smallest (in absolute value) negative eigenvalue of 
the associated eigenvalue problem 

(9) 

The matrix weight function per) is positive-definite, 
an even function of z, magnetically symmetric, 
and lossless. The eigenfunctions qn have the asymp­
totic phase 

n = 0, ±l, ... , (10) 

corresponding to the eigenvalues Un. (The question 
of the completeness of the qn set of functions is 
discussed in Ref. 5. The conclusions reached there 
apply also to our case.) If f (.cuet)*· (Ep- 1.cU8t) dr 
is small, rough lower bounds on a, and f:J, will 
provide close bounds on the phase shift. 
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From Eqs. (7) and (8), we obtain 

::; k[1 + (w/ak)2] cot (1] - 0) 

- k[1 + (w/akf] cot (-'It - 0) + t J U:t'£Uet dr 

::; t!3;1 J (£Uet)*'(Ep-l£Uet) dT. (11) 

B. Lower Bounds on ae and on ~e 

In the analysis of scalar problems, lower bounds 
b bt ' d45b . on (Xe and on !3e can e 0 ame . y usmg a com-

parison scalar potential for which the scattering 
problem defined by Eqs. (9) and (10) can be solved 
exactly, and applying the monotonicity theorem 
which states for scalar potentials, that the phase 
shift increas~s monotonically as the scalar potential 
W increases. The quantum mechanical analog of 

• 6 W is the negative of the potential V. The extenSIOn 
of the monotonicity theorem to scattering by an 
N by N matrix potential when there are N open 
channels is the statement that the N eigenphase 
shifts each increase monotonically as the matrix 
potential W increases; the matrix potentials WI 
and W 2 will be said to satisfy WI ;:::: W 2 if each of 
the eigenvalues of WI - W 2 is positive. This ex­
tension was used6 in the analysis of one-dimensional 
scattering by an asymmetric potential, which was 
reformulated as the scattering by a two by two 
matrix potential, with two channels open. It. is 
simple to extend 10 the monotonicity theorem to m­
clude the case in which there are M closed channels 
as well as N open channels, where M can be infinite; 
this case arises in the quantum mechanical scatter­
ing of a particle by a compound system at energies 
below the threshold for breakup. 

The form of the monotonicity theorem that is 
needed for our present application is a special case 
of the general theorem just quoted,. but it. is ~o 
simple a version that one can readIly derIVe :t 
directly. We have scattering by a 3 X 3 .mat:lX 
potential with two open channels and an mfimte 
number ~f closed channels, but the assumption of 
symmetry with respect to z ~ - z reduces ~he 
problem to one in which the eigenmodes can Im­
mediately be decoupled beforehand by symmetry 
considerations being simply the even and the odd 
waves. The eigenphase shifts are therefore simply 
the even and odd phase shifts, and the proof of the 
form of the monotonicity theorem that we need 
follows from the usual proof of the monotonicity 

theorem for scalar potentials by simply replacing 
scalar potentials by matrix potentials. 

Thus, let 1] be the even or the odd phase shift asso­
ciated with the matrix potential W, defined by Eq. 
(3c), and let 1] + d1] be the corresponding phase shift 
associated with the matrix potential W + dW, where 
the correspondence is established by continuity con­
siderations. Assume that dW(r) is positive definite 
for all r. To determine 1] + d1] we choose as our trial 
solution the exact corresponding (even or odd) eigen­
mode solution U associated with W for the choice 
o = O. For dW sufficiently small, we find from Eq. 
(7), since 

£Uet = £(W + dTV)uo(W) = dWuo(W) 

and since 

cot (1] + d1]) - cot 1] = -csc2 
1] d1], 

that 

d1] = t sin2 1](1/k)[1 + (w2/k2a2
)r1 

X J u*·dWu dr ;:::: 0, 

where the last step follows from the assumed positive 
definiteness of dW. The monotonicity theorem, for 
a finite difference between the matrix potentials, 
follows immediately. The conditions under which 
dW(r) ;:::: 0 in terms of conditions on E(r) and IL(r) 
are derived in Appendix A. 

As opposed to the scalar case, the matrix potentials 
for which the scattering problem can be solved 
exactly and readily are far and few between. As 
noted previously,6 it is therefore of the greatest 
practical importance that the comparison potential 
can be a multiple of the unit matrix, that is, ef­
fectivelya scalar. 

We know then from the mono tonicity theorem 
that the phase shift corresponding to the ferrite 
slab which fills the space -d < z < d out to the 
conducting boundaries of the waveguide is less than 
the phase shift which would result if the slab were 
replaced by a dielectric slab of the same dimensions 
and same permittivity (in what follows E denotes 
only the permittivity of the ferrite) as the ferrite 
one, and whose permeability, ILoL, where L can be 
a function of r but is to be a scalar, is such that 
ILo(Ll - IL) ;:::: 0, or Ll - IL ;:::: O. The eigenvalues A 
are determined by solving the secular equation 

(L - ILl) - A 

o 
-ik1 

o 
(L - 1) - A 

o 
= o. 
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Thus, we must choose L such that 

L ~ J.LI ± kl' and L ~ 1, 

for all r. 
Let 8(0-) be the phase shift corresponding to the 

ferrite slab whose potential is equal to 

W + o-p = (vNc2)(p.e - 1) + o-(ciN)p.e, 

where we have made the choice p = (w2/c2 )p.e. 
Let 8'(0-) be the phase shift corresponding to the 
dielectric slab whose potential is equal to W L + o-PL, 
where 

W L = (w2/c2)(Le - 1), 

We then have 

(WL + o-PL) - (W + o-p) = (w/c)2e(LI - p.)(1 + 0-). 

It follows that 8'(0-) > 8(0-) for 0- > -1, and 
8(0-) > 8'(0-) for 0- < -l. 

The phase shift 8'(0-) is obtained by applying the 
boundary conditions at the air-dielectric interface. 
The even and odd phase shifts are 

, ) -I [[k' + (7r/a)2/k'] k'd] 
8,(0- = -kd + tan e[k + (7r/a)2/k] tan , 

-I [e[k + (7r/a)2/k] , ] 
o~(o-) -kd + tan [k' + (7r/a?/k'] tan k d , 

(12) 

where 

k' = k'(o-) = W + (w2/c 2)(eL - 1) + 0-(w2N)eL]1. 

It can be seen from Fig. 2, since 8'(0-) > 8(0-) for 
0- > -1, that a lower bound on ae is given by the 
value of 0-, denoted by a: and defined by o'(an == (J, 

provided that 1/' == 8(0) < (J and 1/ > (J - 7r. 

A lower bound on f3e can be obtained as follows. 
As 0- approaches - 00 , it is evident that the phase 
shift 8'(0-) approaches -kd in the odd case and 
- kd - !7r in the even case. Since 8 (0-) > 0' (0-) for 

0- < -1, it will be noticed, if - kd > (J - 7r in the 
odd case or - kd - !7r > (J - 7r in the even case 
and if 1/ < (J, that there can be no eigenvalues and 
f3e can therefore be regarded as infinite. 

From the rough bounds already obtained on 1/, 

-kd < 1/0 < 1/~, (13) 

it follows that a sufficient condition for obtaining 
lower bounds on ae and fle by the above procedure 
is that dW + W L]f be less than t7r in the even case 
and less than 7r in the odd case; this means that 2d 
must be less than !Ag, where Ag is the smallest guide 
wavelength in the dielectric, if we are to use the 

8 (v). 8'(0') 

----------------+--------,---,r----r 

-----------8-r 
----------------~------------------r 

FIG. 2. Determination of lower bound on Ole and f3e. The 
curve 0'( u) corresponds to a dielectric slab of permittivity Eo E 

and permeability J.IoL filling the guide in the range -d < z < d, 
and whose potential equals (w2 /c2 )[LE(1 + u) - 1]. The curve 
o(u) corresponds to a ferrite slab of permittivity EOE and per­
meability J.loJ.l filling the guide in the range -d ::; z ::; d, and 
whose potential equals (w2 / c2 )[J.I E( 1 + u) - 1]. (J.I is the rela­
tive tensor permeability.) It is assumed that '1/' < IJ, '1/ > 
IJ - 'IT, and -kd - ~'IT < IJ - 'IT. 

above form of analysis for both the even and odd 
case. This restriction is not fundamental, since there 
are other possibilities for obtaining lower bounds 
on ae and f3e. 

S. APPLICATION TO A FERRITE SLAB IN A 
RECTANGULAR WAVEGUIDE 

A. Trial Function 

The exact solution of a dielectric slab, having the 
same dimensions and permittivity as the ferrite 
one, is introduced as a trial function. The scalar 
permeability of the slab is retained as a parameter 
which can be varied to improve the bounds. The 
maximum axial extent of the slab is 2d ~ tAg. 
This enables us to use the lower bounds on the 
associated eigenvalues ae and fle developed in Sec­
tion (4). The normalization constant (J can also be 
varied to obtain more accurate bounds on the even 
and odd phase shifts. However, for convenience, 
(J = 7r - kd is picked in the determination of ae 

and f3e in the bounds on cot (1/0 - (J), and 
(J = 7r - kd and (J = t7r - kd in the determination of 
ae and f38, respectively, in the bounds on cot (1/, - (J). 

With this choice of 8, fl8 ~ co, while a lower bound 
on ae can be determined from Eq. (12), namely, 

, 7r
2 

- k
2
d

2 
- (w

2 /c2
)(eL - 1) (14) 

ae > ae = (w2/c2)eLd2 . 

The trial functions for -d < z < d with the 
above choices of (J are 
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odd, upper and lower bound: 

Us. = -(:b)\Sin
1
Kd)[ a% sin (1r;) sin Kz 

+ a'(:K) cos (1r;) cos Kz l 
even, lower bound: 

( 2)1 f[k + (1r/a/k- 1
] _1_ 

U6t = - ab [K + (1r/alK 1] sin Kd 

(15a) 

X [a% sin (1r:) cos Kz - a. (:K) cos (1r;) sin Kz l 
(15b) 

even, upper bound: 

Us. = -(:b)\cos
l 
Kd)[ a% sin (7) cos Kz 

- a'(:K) cos (1r;) sin KZJ. (15c) 

The parameter K is 

K = [e + (ci/c2)(p.tf - 1)]1, 

where IJ., is the trial (scalar) permittivity. 
The normalization of the trial functions in Eqs. 

(15) and the determination of the trial phase shifts 
is accomplished by matching the tangential com­
ponents of Et and H, at z = ±d to the asymptotic 
expressions of Eqs. (4). 

Substitution of the trial functions and trial phase 
shifts in Eq. (11) (where the range of integration is 
over the volume of the slab, V = 2 abd) yields as 
the bounds on cot 71. and cot 710 

-~ csc2 (Kd)P[ Q- + (:KY Q+ Ja;1 

~ [k + (~)\-l ] cot (710 - 1r + kd) 

- ~ [K + (~yK-IJ cot Kd 

+ ~ esc' (Kd)R[ Q- + (:KrQ+ ] ~ 0, (16a) 

[k + (~rk-lJ cot (71. - ~ + kd) 

~ -; [ K + (~yK-1J tan (Kd) 

- ~ sec2 (Kd)R[ Q+ + C~Y Q-J, (16b) 

[ k + (~)\-1 ] ; [ K + (~yK-I ] cot (Kd) 

- ~ [k + (~rk-I ] esc
2 (Kd)R JQ+ + C'k),Q-] 

- ~ [k + (~yk-1 ] csc2 (Kd)P[ Q+ + (:KYQ- ]a;1 

~ (~)T K + (~rK-1 J cot (71. - 1r + kd), (16c) 

where 
Q+.- = (1 ± sin 2Kd/2Kd)d, 

a;1 = (W/C)2 fLd2/[1r2 - k2d2 - (W/C/(Lf - 1)d2] , 
(L = 1.65 :2: IJ.1 ± k1), 

R = -f-1[(1r/a/ + K2] + (W/C)2IJ.1' 

P = l~~C:)~~) [(~r + K 2J 
+ (~rIJ.1 - ~ [(~r + K 2

J. 

B. Numerical Example 
A numerical example with convenient parameters, 

(W2/C2
) = 21r2/a2, 

f = 10, IJ.I = 1.35, 

IJ.(eff) = (p.~ - kD/IJ.1 = 1.3, (k1 ~ -0.26), 

d = -ha, b = la, 
is presented in this section. With this choice of the 
parameters, only the dominant mode propagates in 
the free space portion of the waveguide. Also, a 
half guide wavelength in the ferrite is (32)-la, which 
exceeds 2d = la. 

Intuitively, the parameter K might be expected 
to yield the closest bounds for some value of 
IJ., [K2 = IJ.tfW2/C2 - (1r/a)2] betweenIJ.1 - kl = 1.61 
and IJ.I + kl = 1.09, corresponding to the relative 
right circular polarized and left circular polarized 
permeability, respectively. Different choices of K 
corresponding to IJ.t between 1.61 and 1.09 were 
tried in obtaining the best bounds on 710 and 71 •• 

(Since we have a variational bound rather than 
simply a variational principle, it is not necessary 
to find the value IJ.t which gives a stationary esti­
mate of the phase shift.) It is more conventional to 
present the data in terms of the elements of the 
equivalent 1r circuit shown in Fig. 3. The sus­
ceptances Bl and B2 are relative to the characteristic 
admittance of the waveguide, and are related to 
the phase shifts 710 and 71. by 

Bl = tan 710' (17) 
B2 = l(cot 71. + tan 710). 
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The best upper and lower bounds on '1]. and '1]0' 
and on Bl and B2 are listed in Table 1. 

It would be possible to obtain closer bounds by 
introducing a more sophisticated trial function (con­
taining higher-order modes) with additional param­
eters. As opposed to the situation that obtains for 
the usual variational principle, the inclusion of 
additional parameters into the trial function will 
always give better results, but this will increase the 
calculational effort. 

While the above results are presumably interest­
ing, the question remains as to how wide a class of 
problems can fruitfully be attacked by the above 
approach. This point will be considered in the 
discussion. 

6. THE VARIATIONAL BOUND 

As noted above, we will present the details of the 
connection between the waveguide and quantum 
mechanical scattering formalisms7

-
1o only for k = O. 

To go to this limit, it is simplest to set () = !11". 

Furthermore, since the phase shift has the same 
energy dependence for the even case for the wave­
guide problem as for zero-angular-momentum quan­
tum mechanical scattering, we will consider the 
even case. Thus, it can be readily shown that 
tan '1]. is proportional to k for k sufficiently small, 
and we therefore define the scattering length A. 
and the trial scattering length A •• by 

A = l' (_tan '1].) 
• - 1m k' 

k-O 
A = l' (_tan '1].t) 

.t - lID k' 
k-O 

We of course also have ci/c2 ~ 1I"2/a2 as k ~ O. 
The scattering function u. then has the asymptotic 
behavior 

u.--t -(;bY[az Sin(1I":) - a.~(cos1l":)(Z-A.)J 
as z --t 00. u. also satisfies certain continuity con­
ditions, as well as the condition (V xUe)tang = 0 
on conducting surface. Similar continuity and bound­
ary conditions will be imposed upon Uet, and the 
difference function w. will therefore satisfy the same 
continuity conditions as well as the boundary 

I -jB. I 
I I 

I jB, I I jB, I 

FIG. 3. Equivalent 'II' network for describing the far-field 
effects of scattering by symmetric ferrite obstacles in wave­
guide. 

conditions 

(2)* 11" (1I"x) W. --t ab (A. - A. t ) li cos -a a., Z --t 00 

(V xW.)tana = 0 on conducting surface. 

Equation (7) then reduces to 

- ~ J W.· (X - ::)w. dT, (18) 

where X is given by Eq. (3) but with ci /c2 set equal 
to 11"2/ a2

• In making the connection with the quantum 
problem, x and yare to be thought of as the" target" 
coordinates while z is to be thought of as the co­
ordinate of the "incident particle". The "target 
Hamiltonian", that part of X which is independent 
of the coordinates of the incident particle, is then 
given by 

X T = - il / ax2 
- a2 j aif , 

and the incident kinetic energy operator is given by 

T(incident) = - a2j al. 

The operator that corresponds to X - 11"2 ja2 in 
the quantum mechanical case is X - E BT , where 
X is here the total Hamiltonian and E BT , the 
binding energy of the target, is the lowest energy 
eigenvalue of the target Hamiltonian, X T • The entire 
procedure in the quantum mechanical case for ob­
taining a bound on the analog of the last term of 

TABLE 1. The best upper and lower bounds on the even and odd phase shifts, and 
on the susceptance of the equivalent 'II' network. 

Upper bound 
Lower bound 

'10 

(J.'I = 1.3) 71°29' 
(J.'I = 1.3) 71°21' 

'Ie 

(1'1 = 1.35) 34°08' 
(1'1 = 1.35) 32°52' 

2.986 
2.963 

B~ 

2.267 
2.219 
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Eq. (18), the error term, then centers about the 
fact that the continuous spectrum of Je - EBT 

for the class of functions allowed is bounded from 
below by zero. This is a consequence of the fact 
that for the class of functions allowed both JeT - EBT 

and T (incident) are nonnegative operators, and 
that the interaction of the incident particle with the 
target does not affect the end points of the continuous 
spectrum though it may introduce discrete eigen­
values. The argument for obtaining a bound in the 
ferrite case is identical in form. The only point that 
warrants discussion is the proof that Je - 7r

2 
/ a

2 

is a nonnegative operator with respect to the func­
tions w.. The proof is relagated to Appendix B. 

Weare therefore in a position to take over the 
zero-incident-energy quantum mechanical varia­
tional bound in its entirety. In particular, if Je -
7r

2 
/ a2

, has no negative eigenvalues, or in waveguide 
language if Je - 7r

2 /a2 does not have any evanescent 
modes, we obtain our variational bound by simply 
dropping the error term, while if it does have nega­
tive eigenvalues we have to go through the usual 
"subtraction" procedures. lo For the ferrite problem 
it would generally be difficult to determine from 
first principles whether or not there are in fact 
negative eigenvalues, and one would simply add 
terms until one felt sure that no further jumps 
would occur. For a dielectric obstacle, on the other 
hand, it might often well be possible to prove from 
first principles that negative eigenvalues do not 
exist by showing that the generalization of the 
Bargmann-8chwingerl5 necessary conditions for the 
existence of negative eigenvalues is not satisfied. 
We might note incidentally, as observed by Dr. 
B. Lippmann, that there are no negative eigenvalues 
for a plasma since E < 1 represents a repulsive 
potential. 

7. DISCUSSION 

We will consider briefly the class of problems to 
which the two variational bounds can be applied. 

To begin with, the requirement that J.I. and E be 
even functions of z can be dropped for each of the 
two variational bounds. As noted above the quad­
ratic variational bound has in fact been applied to 
unsymmetric dielectric 0 bstacles6 

.16 and an ex­
tension of the present formalism to unsymmetric 
gyromagnetic obstacles is in progress. We also re-

15 V. Bargmann, Proc. Natl. Acad. Sci. U. S. 38, 961 
(1952); J. Schwinger, ibid. 47, 122 (1961). See also Ref. 9, 
Sec. lIA5. 

16 K. Kalikstein and B. Schuldiner, IEEE Trans. Micro­
wave Theory and Tech. 12, 252 (1964). 

mark that there are geometrical waveguides other 
than rectangular waveguides which can be attacked. 

The requirement that the thickness of the ob­
stacle be small will be difficult to circumvent in the 
quadratic variational bound because of the necessity 
of obtaining the eigenvalues Cl!e and (3e or bounds 
on these eigenvalues. There is no difficulty in utiliz­
ing the linear variational bound for thick obstacles 
and thereby in studying the effects of surface 
scattering as distinct from volume scattering. 

As noted earlier, the linear variational bound can 
be extended quite readily to multichannel scatter­
ing.'7 As apart from the formal aspect of the prob­
lem, however, it remains to be seen how practical 
this approach is, for it must be recalled that the 
method requires the (numerical) solution of a 
scattering problem, albeit a problem much simpler 
than the one under consideration. 

Finally, we make a few brief comments on prob­
lems in which geometric as well as anisotropic dif­
fraction is significant. Consider the case of an 
obstacle 0 1, of rectangular parallelopiped shape, 
symmetrically placed in the waveguide and charac­
terized by EJ (x, z) and J.l.1 (x, z). The difficulty is not 
one of principle but of practice; it is to find simple 
but realistic trial functions which satisfy the neces­
sary boundary conditions that the tangential com­
ponents of H t and of (1/ EI) V x H t be continuous 
at the interface. Since these boundary conditions 
are independent of J.l.1, it is variations of EI and not 
of J.l.1 which are difficult to handle. The case for 
which El is 1 but J.l.l is a constant other than 1 or a 
varying function could be readily attacked. A more 
interesting but more difficult problem is one for 
which El is not everywhere equal to 1. One approach 
to the problem would be to choose a trial function 
for which (Ht)tang is continuous at the interface, 
and for which (V x H t ) tang = 0 at the interface 
so that (1/ E) (V x H t ) tang is continuous at the inter­
face in spite of the variation of E. Such a trial 
function would however be neither simple nor 
realistic and would lead to a poor (if rigorous) bound, 
and then only at the cost of great labor. For simple 
variations of E, it may be possible to choose more 
realistic trial functions. A more general approach 
but one of limited accuracy would be to consider 
an obstacle O2 , characterized by E2(X, z) and J.l.2(X, z), 
which is also a rectangular parallelopiped but which 
touches the four walls of the waveguide and which 
contains 0 1 , Choosing E2 to be a constant, equal to 
the maximum value of El (x, z), and choosing 

17 The quantum mechanical case is considered by Y. Hahn, 
T. F. O'Malley, and L. Spruch, Phys. Rev. 134, B397 (1964). 
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J..I2(X, Z) ;::: J..Il (x, z), the monotonicity theorem tells 
us that 112 > 7/1. The particular choice of E2 generates 
a problem amenable to a variational bound approach, 
and this upper (variational) bound on 112 will serve 
as an upper bound on 111; if the difference between 
E2 and El (x, z) is large, the bound will of course be 
crude. 
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APPENDIX A: A MONOTONICITY THEOREM 

In Sec. 4B, we showed that if W 2 (x, z) ;::: 
W 1 (x, z), that is, if for all x and z each of the eigen­
values of W 2 (x, z) - WI (x, z) is nonnegative, then 
112 > 111. Wi(x, z) is given in terms of Ei(X, z) and 
J..Ii(X, z) by Eq. (3c), and we would here like to re­
express the monotonicity theorem in terms of the 
E,(X, z) and J..Ii(X, z), where i = 1 and 2. Assuming 
small differences, a restriction which can always 
ultimately be dropped, the monotonicity theorem 
goes through if we can prove that 

J == f U~·[W2(X, z) - W 1(x, z)]uo dr ;::: O. 

It is convenient to revert to the operator £, and 
use Eqs. (2) and (3a) to write 

With some trivial manipulation and the use of the 
fact that certain surface terms vanish, we can write 
J as 

J = f (1 - 1) \V xUo \2 dr 
EI E2 

+ ~; f (J..I2 - J..Il) \UO\2 dr. 

It follows that J ;::: 0, and therefore that 112 ;::: 111, 

if for all x and z, E2 ;::: EI and J..I2 ;::: J..Il. 

APPENDIX B: 
NONNEGATIVENESS OF :JeT - 1r2/a2 AND 

OF T (INCIDENT) 

We here prove that JeT - 7r2 j a2 and T (incident) 
are nonnegative with respect to the class of func-

tions which satisfy the boundary conditions im­
posed upon w •. We begin by noting that in the 
absence of any obstacle, the free (F) even magnetic 
field is given by 

HF() • 7rX (7rz) (7rX) • X, Z = - az sm ~ + a. -;; cos ~ . 

(The subscript e, it will be recalled, refers to the 
fact that H~ is even under z ~ -z, for which 
a. ~ -a. of course.) The proof will depend upon 
a symmetry argument related to the x coordinate, 
and it will be convenient to introduce the coordi­
nates X = x - !a, Y = y - !b, and Z = z, whose 
origin is centrally (and therefore symmetrically) 
located in the waveguide. We then have 

H~(X, Z) = -ax cos 7r; _ az(7r;) sin (7r;). 
Denoting the transformation X ~ -X, Y ~ Y, 
Z ~ Z by R, it is clear since ax ~ - ax under R 
that H~ is odd under R. Since J..I(X, Z) and E(X, Z) 
are by assumption even functions of X, and since 

a a 
V = ax ax + az az 

is even under R, if follows that V and therefore 
VeX, Z), as given by Eq. (3c), are even under R. 
To first order in VeX, Z), only states of H.(X, Z) 
that are odd under R are therefore excited by the 
presence of the dielectric. Since V cannot couple 
states that are even and odd, respectively, under R, 
the oddness of H. is maintained to all orders, and 
the most general form that H. can assume is there­
fore 

ro 

H.(X, Z) = L Setn, gn), (AI) 
,,-0 

where 

() n7rX . n7rX 
Sin, g" == ax cos - ineZ) + az sm - gn(Z); 

a a 
(A2) 

the (Z-dependent) coefficients of the terms 
ax sin (n7rXja) and of az cos (n7rXja) that could 
appear in the Fourier expansion of an arbitrary 
function in the interval -!a < X ~ !a must vanish 
for H. since they are even under R. Restrictions 
can also be imposed upon the ineZ). Since the normal 
component of B and therefore of H must vanish at 
a metallic surface, we must have H.x(±!a, Z) = 0, 
which requires that ineZ) = 0 for n even. The par­
ticular point of interest is that there is therefore 
no n = 0 term in Eq. (AI). We also note that 
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H (X Z) 
7rX 7r(Z - A.) . 7rX 

e , ~ -ax cos - - az sm -
a a a 

as Z ~ co. This follows from Eq. (4) on setting G,,(Z) ~ 0, n > 1. 
o = !7r, letting k ~ 0, and using the definition of A.. It is then trivial to show that 
We can therefore write 

m 

He(X, Z) = L: S(j", g,,), 

where, as Z ~ co, 

Mz) ~ -1, 

gj(Z) ~ -7r(Z - A.)/a, 

I,,(Z) ~ 0, g,,(Z) ~ 0, n> 1. 

(Some of these coefficients vanish identically but 
that is of no concern here.) If Het(X, Z) is chosen 
to be of the same form as He, it follows that 

m 

we(X, Z) = L: S(F", G,,) 

where, as Z ~ co, 

F,,(Z) ~ 0, all n, 

and that 

T(incident) = (- ii / aZ2
) 

are separately nonnegative with respect to functions 
w. of the above form, which proves the theorem. 
Since 

the above theorem can be roughly interpreted as the 
statement that of all fields that satisfy the same sort 
of boundary conditions as H~, it is H~ which has 
the least "kinetic energy". This suggests, incident­
tally, that there is probably a completely trivial 
proof of the theorem. 
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Using the multiple-time-scale method on the BBGKY hierarchy, the weak coupling expansion is 
carried out to higher orders. It is found that there are two local breakdowns of the expansion. One 
occurs at small relative velocities between particles. The correct asymptotic representation for the 
small relative velocity region is given. The second breakdown occurs for particles having a large 
separation at t with their relative velocity oriented in such a way that they were in collision at t = O. 
Such a breakdown indicates that in contrast to the Bogoliubov functional assumption, the higher­
order correlation functions should vary on the kinetic time scale in their own right. A sufficient con­
dition on the smoothness of the initial correlation functions is given such that one obtains the Fokker­
Planck equation at the lowest-order approximation in the expansion. The connection between irre­
versibility and the requirement of nonsecularity in the multiple-time-scale formulation is also indicated. 

1. INTRODUCTION 

I N recent years the problem of the approach to 
thermal equilibrium has been investigated from 

the dynamical point of view.1 The analysis is de­
ductive in nature. Starting from the equation of 
motion of an assembly of particles, one tries to 
derive the kinetic equation (an autonomous or 
Markoffian equation for the one-particle distri­
bution function) as purely deductively as possible. 
The objective of such analysis is twofold: 

(1) To find the missing link between the re­
versible dynamical equation and the irreversible 
kinetic equation. 

(2) To find the correction terms to the known 
collision integrals by use of a systematic expansion 
procedure. Also, to put the Boltzmann equation, 
etc., on as rigorous a basis as possible. 

The methods of approach in the literature are 
very diversified. However, they have in common the 
following two features: 

(1) The limit of large system. The system under 
consideration is asymptotic in the sense that the 
total number of particles N ~ co and the total 

1 There are an enormous number of articles in the liter­
ature; we give only a few as follows (by no means inclusively): 
(a) N. N. Bogoliubov, J. Phys. (USSR) 10,256(1946). [Enghsh 
transl.: E. K. Gora in Studies in Statistical Mechanics, edited 
by J. DeBoer and G. D. Uhlenbeck (North Holland Pub­
lishing Co., Amsterdam, 1962), Vol. 1]. (b) 1. Prigogine, Non­
Equilibrium Statistical Mechanics (Interscience Publishers, 
Inc., New York, 1962). (c) Review article by S. Rice and H. 
Frisch, Ann. Rev. Phys. Chem. 11, 187 (1960), contained the 
work by Kirkwood and his co-workers. (d) M. Green, Nat!. 
Bur. Std. Rept. No. 3327 (1955). (e) G. E. Uhlenbeck, 
lecture notes, "The Statistical Mechanics of N on-equilibrium 
Phenomena," Higgins lecture, Princeton University. (f) E. G. 
D. Cohen, Fundamental Problem in Statistical Mechanics 
(North-Holland Publishing Co., Amsterdam, 1962). 

volume V ~ co, while the average density n = N IV 
remains constant. Such a limit, usually called the 
bulk limit, is introduced so that surface effects of 
the system can be ignored and the Poincare cycle 
becomes infinitely long (a necessary condition for 
the irreversibility, if we purport to describe the 
behavior of a single system rather than merely the 
average behavior of an ensemble). 

(2) A clear distinction in the different time scales 
involved in the kinetic problem. It is a well-accepted 
point of view that the kinetic states (states governed 
by the kinetic equations) are the long-time asymp­
totic states on the (short) time scale of the order 
of the interaction time of the particles. 

The kinetic equations which have been derived 
so far are as follows: 

(1) Low-density system: the leading term in 
the asymptotic expansion gives the Boltzmann 
equa tion.1 ( .. ) .2 

(2) Weak-interaction system: the leading term 
in the asymptotic expansion gives the Fokker­
Planck equation.1 

(b) .3 

(3) Plasma case: the leading term gives the 
Lenard-Balescu equation.4.5 

Although the leading behaviors in the expansions 
of the above three cases were obtained through 
various methods by various investigators, the nature 
of the expansions carried to higher orders has not 
been analyzed properly in the literature. In this 

IS. T. Choh and G. E. Uhlenbeck, The Kinetic Theory of 
Dense Gases, (University of Michigan, Ann Arbor, Michigan, 
1958). 

a E. A. Frieman, J. Math. Phys. 4, 410 (1963). 
, R. Balescu, Phys. Fluids 3, 52 (1960). 
6 A. Lenard, Ann. Phys. 10,390 (1960). 
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paper, we shall carry out the series solution of the 
weak coupling system to higher orders. In addition 
to obtaining the higher correction terms, we shall 
investigate in detail the asymptotic nature of the 
series solution, i.e., the uniformity of each term in 
the series with respect to both space and velocity 
variables as well as the time variable. The choice 
of the weak coupling system is based on the rela­
tively simple mathematical structure of the solution 
for this system. Explicit forms for the solutions to 
all orders can be obtained in principle and the uni­
formity analysis of these solutions can be carried 
out without too much complication. 

We shall adopt in the present paper the multiple­
time-scale method in the derivation of the Fokker­
Planck equation and its correction equations from 
the BBGKY hierarchy. This method has its origin 
in the solution for a nearly periodic system in the 
field of nonlinear mechanics.6

• 7 The use of the method 
in connection with the kinetic equation (nonperiodic) 
was first developed by Frieman3 and Sandri.8 In 
this method, the slow process in the problem (the 
evolution which is governed by the kinetic equation) 
is assumed to be describable by an independent 
"slow time variable," in contrast to the "fast time 
variable" which is of the order of the collision time. 
In the formal solution of the problem as far as the 
time dependence of the system is concerned, one 
formally replaces the single time variable by a 
"space of times," i.e., one replaces t(t) by 

(1) 

where t is any function describing the system and 
to, tl , t2 , •• , are treated as independent variables 
as far as the formal solution is concerned. The rates 
of the various times are characterized by the simple 
differential equations 

i = 0, 1,2, .. , (2) 

where f is the small expansion parameter in the 
problem. The {3i are appropriately chosen functions 
of E satisfying {3i+1 (f) « {3i (f). For the weak coupling 
system, f is taken to be the ratio of a typical poten­
tial to the average kinetic energy, which is assumed 
to be small. In the kinetic problem, it seems ap­
propriate to assume that the {3! are just simple 
powers in f, i.e., 

i = f. (3) 

IN. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic 
Theory of Nonlinear Oscillations (Gordon and Breach Science 
Publishers, New York, 1961). 

7 M. D. Kruskal, J. Math. Phys. 3, 806 (1962). 
8 G. Sandri, Ann. Phys. (N. Y.) 24, 332, 380 (1963). 

It is seen that a change of t specified originally 
in the t direction is now replaced by a change in the 
direction given by the characteristics (2). The varia­
tion along such a characteristic direction shall be 
chosen in such a way that the series representation 
of t will be valid uniformly over the "space of times." 
In other words, the variation of t on a slow time 
scale (say ti ) is determined by the condition that 
the representation of t behave well asymptotically 
as a function of all faster times to, tl , ••• ti - I , in 
particular as they become infinite. In practice, this 
amounts to requiring that no secular terms appear 
in the representation-terms containing positive 
powers of a time variable. As we shall see presently, 
in the kinetic problem this condition of nonsecularity 
on the fast time scale is just the desired kinetic 
equation. 

We have so far discussed the extension of the time 
variable only in connection with the governing equa­
tion (variation of t). If now we pose an initial value 
problem for t, we shall need initial data as functions 
of space and velocity at t = 0 for the original un­
extended problem. We shall refer to such initial 
data as arbitrary initial data in our later analysis. 
It is seen that the arbitrary initial data determine 
f only on one of the characteristic lines in Eq. (2). 
Without loss of generality, we may assume this 
line passes through the origin of the time axes, 
to, tl , ••• t.. In order to determine f completely 
over a cylindrical region with the to axis as its axis, 
we must have the initial data prescribed on a hyper­
surface of the "space of times," say, with the 
normal of the hypersurface lying in the direction 
of the to axis. The initial data on the hypersurface 
are unknown when the physical problem is first 
posed. (Actually only the derivatives of t in the 
various directions on the hypersurface are required, 
since we know the value of f at the origin.) How­
ever, they are not arbitrary in the sense that the 
original initial data are, since they are determined 
by requiring that the resulting solution for f be 
uniformly valid over a long time. To avoid con­
fusion with the original arbitrary initial data we 
shall call such initial data on the hypersurface in 
the "times space" the "unknown initial functions." 

The foregoing discussion, of course, deals with 
only a formal procedure for the extension of the 
time variable. It is still an open question in general 
what is an appropriate definition for "nonsecularity" 
such that the extended problem becomes well-de­
fined. In the Appendix this question is discussed 
for several simple examples. In one example, a 
definition of nonsecularity is satisfied by the use 
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of the unknown initial functions, while in another 
the problem becomes underdetermined because of 
the extra freedom introduced by the unknown initial 
functions. No such underdeterminism appears in 
the weak coupling expansion to the orders we shall 
treat in the present work. 

In this paper, we shall not include the unknown 
initial functions for the weak coupling system.9 It 
is found for this particular expansion that there are 
two local nonuniformities: 

(1) When the relative velocity between particles 
becomes too small. We recall that in the weak coupl­
ing approximation the interaction force between 
particles is considered only as a small perturbation. 
When the relative velocity between particles be­
comes small, their interaction time increases and 
the change of velocity during the interaction may 
become even greater than their initial velocity of 
approach. Under such circumstances, the interaction 
between the particles cannot be treated as a small 
perturbation. In our formal weak coupling ex­
pansion, the inappropriate treatment of the force 
term causes a local singularity of the higher order 
correlation functions at zero relative velocity. This 
local singUlarity first appears in the second-order 
two-particle correlation function and it becomes 
worse and worse as we go to the higher orders. A 
boundary layer analysis is applied to a small local 
region in relative velocity space (with a thickness 
of the order E!). The dynamical behavior in this 
region is found to be short-range interaction with 
a mixing time of the order of E -} in contrast to unity 
for the particles outside the layer. The mixing proc­
ess for particles of small relative velocity is es­
sential in the study of the following two important 
problems: 

(a) Determining the transient behavior of the 
system in establishing the kinetic state (state satisfy­
ing the kinetic equation). 

(b) Obtaining a smoothness condition on the 
arbitrary initial correlation functions such as to 
ensure the establishment of the kinetic state. 

Both these processes are controlled essentially 
by the phase mixing of the particles with small 
relative velocity. The mixing process provided by 
the phase mixing integral in the relative velocity 
space becomes more and more ineffective as the 
relative velocity of the particles approaches zero. 
However, when the relative velocity between two 
particles becomes small, the transfer of momentum 

• For an analysis including the unknown functions, see 
C. H. Su, "The Kinetic Equation for a Weak-Coupling Gas," 
Ph.D. thesis, Princeton University, 1964. 

due to their interaction, even though weak, can no 
longer be neglected, because the orbits now deviate 
appreciably from straight lines. Such exchange of 
momentum provides enough phase mixing for the 
system. The results, after proper treatment in the 
region of small relative velocity, of the above two 
phenomena are 

(a) The transient is an exponential decay on the 
time scale E-!. 

(b) The kinetic equation will be independent of 
the arbitrary initial conditions on the correlation 
functions as long as the latter are not exponentially 
large at the small relative velocity. 

The smoothness condition just given is merely 
a sufficient one. It is far from necessary. Since the 
initial conditions are functions of several vectors, 
a necessary condition on the smoothness is very 
difficult to obtain. 

(2) The second local breakdown of the ordinary 
weak coupling expansion occurs for particles of 
large separation at time t with such relative velocity 
that they were in collision at t = O. Since this 
singularity of the pair correlation functions is very 
localized in the phase space, its effect on the one­
particle kinetic equation comes out only at higher 
orders of approximation. Furthermore, if the pair 
potential has a finite range and is small compared 
with the mean free path, we shall show that the 
effect of the second singularity on the one-particle 
equation can be neglected for all orders of approxi­
mation. It will be established, however, that the 
second kind of local singularity has its origin in 
that the lowest order approximation to the pair 
correlation function has an infinite range in this 
special local region. It is recalled that the lowest­
order pair-correlation function is a binary inter­
action approximation. Now if the range of such pair 
correlation is infinite in a certain region, the presence 
of other particles cannot be ignored. This indicates 
that there will be a different asymptotic representa­
tion of the hierarchy equations in this special local 
region. 

In our extension of the time variable to a space 
of times, there arises the delicate question whether 
one needs time so slow that it has no apparent 
physical significance. In the weak-coupling expan­
sion, for example, the fast time to = t is charac­
terized by the collision time and the physically 
meaningful slow time t2 = E

2t by the mean free 
time. The question is whether we should expect to 
find any dependence on t3 = it. Under the con­
dition of nonsecularity on the t2 scale, it is found 
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that the time scales do terminate at the t2 scale. 
This result can also be demonstrated in the second 
example in the Appendix. 

Finally, we come to the question of irreversibility. 
There are various explanations of irreversibility in 
the literature. In what follows we shall restrict 
ourselves to pointing out the relevant properties 
of the hierarchy itself and the crucial operations 
which we shall apply to it. Such properties and 
operations which give rise to the irreversibility of 
the resulting kinetic equation are: 

(1) Large-system limit (operation): We need only 
mention that after this limiting process the equa­
tions are still time reversible, though their solutions, 
in general, exhibit irreversible behavior (infinite 
Poincare cycle). 

(2) Phase mixing (property of the system): This 
phenomenon washes away the effect on the kinetic 
equation of the arbitrary initial data for the corre­
lation functions. However, it must be noted that 
such mixing does not by itself single out a preferred 
direction of time. In fact, the phase mixing seems 
to correspond to the Ehrenfests' coarse-graining 
which, by itself, is not sufficient to make the system 
evolve in a preferred direction of time.10 

(3) Distinction between fast and slow processes 
(property of the system) and requirement of non­
seCUlarity in the (fast time) limit to _ + co (opera­
tion): It is this last operation which picks out a 
time-irreversible subclass of solutions of the hier­
archy; and it is found that the individual solutions 
of this subclass not only exhibit irreversible behavior 
but satisfy the time-asymmetric kinetic equation. 
Thus, within the framework of the multiple-time­
scale method, it is clear how and where the irre­
versibility is introduced. However, we believe that 
the more philosophical question of "why" still 
remams. 

In the next section, we shall give a brief discussion 
of the physical parameters in the problem. In Sec. 
III we shall solve the hierarchy equations on the 
fast time scale under the weak interaction approxi­
mation and there the occurrence of the two local 
secularities will be pointed out. In Sec. IV the analy­
sis for small relative velocity will be given. In Sec. V 
we shall give the higher-order kinetic equations. 
Finally, the smoothness condition on the arbitrary 
initial data and the question of irreversibility will 
be discussed. 

10 M. Kac, Probability and Related Topics in Physical 
Science8, (Interscience Publishers, Inc., New York, 1957). 

2. PHYSICAL PARAMETERS 

The characteristic physical quantities which are 
associated with any kinetic problem of a homo­
geneous, one-species system are 

(4)), the typical strength of the interparticle po­
tential; 

vav, average speed of the particles; 
ro, effective range of the interparticle potential, 

in the present analysis, this is assumed to be finite; 
n, average spatial density of the particles in the 

system; 
t, characteristic time; 
m, mass of the particle. 

Out of these six quantities can be formed three 
dimensionless parameters. They are 

D = nr~, 

The first one, <P, measures the effective strength 
of the interaction between particles. The second 
one, D, characterizes the density of the system (num­
ber of particles within the interaction sphere). The 
last one, T, is a time parameter. In applying the 
multiple-time-scale method, the fastest time scale 
in the problem is taken to be the characteristic time. 
One expects the change on the slower time scales 
to be picked up by the method automatically. In 
the kinetic problem, the fastest time scale is the 
time for a particle to cross the range of force. Using 
this time as the characteristic time, we note that the 
time parameter T above is of order one. If now we 
use the characteristic quantities to nondimension­
alize the hierarchy,l1 we find 

(a) Every time derivative term will be associated 
with a time factor T, which is of order unity. 

(b) All convective terms, such as (VI - v2)·iJ/iJx 
will have coefficient unity. 

(c) All force terms (terms involving 4» will have 
a potential factor <P. 

(d) All the integral terms (terms on the right side 
of the equations) will have a potential factor 
<P and a density factor D. 

The nature of the weak coupling expansion is 
best described by the order of the magnitude of 
<P and D 

<P = (4))/mv!v = E « 1, D = nr~ '" 1. (4) 

The interaction is weak. We shall expand in the 
small parameter E. With the choice (4), it is simple 
to determine the orders of the various terms in the 

11 The first three members of the BBGKY hierarchy are 
given in the next section. 
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hierarchy equations. In fact, it is clear that all 
terms involving the potential cJ> are of order E, while 
all other terms are of order unity. 

The hierarchy equations pose an initial-value 
problem. However, as usual in statistical me­
chanics, we do not have detailed initial data for 
the problem. In the sixth section we shall show that 
the system of hierarchy equations has the important 
property that the effect of any reasonably smooth 
initial data of the correlation functions on the one­
particle distribution function will be mixed and 
washed away in a time of order of the duration of a 
collision. The influence of the initial data is there­
fore limited to this "initial time layer" only. As far 
as the kinetic behavior of the system is concerned, 
the initial correlations are unimportant. In this and 
the next three sections, we shall restrict our con­
siderations only to correlations which are created 
during the initial time layer. 

We have chosen the characteristic time of the 
problem to be the time for a particle to cross the 
range of force of another particle. We further men­
tioned that the change on the slower time scales 
was expected to be picked up automatically by the 
method of multiple time scales. It is interesting to 
see what the distinct time scales are in the kinetic 
theory of weak coupling systems before we go into 
a detailed study of the hierarchy equations. We take 
the fast time scale as the characteristic time scale, 
i.e., 

and the slow time scale as the time between col­
lision, i.e., the effective mean free time. The change 
in momentum for a thermal particle crossing the 
range To of the potential of a given particle is, in 
order of magnitude, the product of the force and 
the transient time, or 

(cJ>/ro)TI = cJ>/vav• 

The change of angle in velocity is the relative 
(logarithmic) change in the momentum, or 

(cJ>/vav)/mvav """ E. 

However, the change of angle averaged over col­
lision orientations is zero; therefore it is the square 
of the change in angle that sets the scale for dif­
fusion in velocity space. Thus the slow time is 
given by 

T. ,...., T/(1/E2). 

In the hierarchy equations, t is the time for fast 
variation, and so we expect that the kinetic evolution 
will take place on the it time scale. 

3. WEAK-COUPLING EXPANSION 

3.1 The Lowest-Order Approximation 

The first three members of the hierarchy under 
the assumption of weak interaction are given as 
follows: 

af = E n J dx dV2 de/> • .ElL (5) 
at m dx aVI 

ag ag E de/> (a a ) 
at + V 12 • ax - m dx· aV

I 
- aV

2 
[g(12) + f(1)f(2)] 

nJ de/> {a = E m d~ dVa d~· aV
I 

[f(1, t)g(~ - x, 23, t) 

a + hex, ~, 123, t)] - -a [f(2, t)g(x - ~, 13, t) v. 

+ hex, x - ~, 123, t)]}. 

{:t + VI'" :x + Via· :~}h(X'~' 123, t) 

- ~ ~"(a~l - !J[h + f(1)g(23) + f(2)g(13)] 

- !- de/>. (~ _ ~)[h + f(1)g(23) + f(3)g(12)] 
m d~ OV1 OVa 

_ !- ocJ>(~ - X).(~ _ ~) 
m o~ av2 OVa 

X [h + f(2)g(13) + f(3)g(12)] 

= Integral terms of order E, 

where 

1= Fl , 

g = F2 - f(1)f(2), 

h = Fa - f(1)g(23) - f(2)g(13) 

- f(3)g(12) - f(1)f(2)1(3). 

We consider the following series solution: 

f = f(O) + Ef O ) + E2(2) + 
g = lO) + EgO) + E2g(2) + 
h = h(O) + Eh(l) + E

2
h(2) + .... 

(6) 

(7) 

Within the framework of multiple-time-scale form­
ulation, the time derivative is also formally expanded 
as a power series in E, i.e., 
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Using these series in Eqs. (5)-(7), one obtains a 
set of equations for different order of approximation. 
The solution in the lowest significant order has been 
carried out by Frieman.3 We shall give here only 
a brief account. With the assumption of zero initial 
correlations, it can be shown that 

1(0) - I(Ol(t t ) g(O) - h(O) - h(!) - 0 - 2, a, ... , - - -, 

and 

1" acp 
. ° dT ax' [x' = x - VI2T]. (8) 

Passing to the limit to ~ ro, we see that the variation 
of g (1) in time occurs only through 1 (0) (1) and 1 (0) (2), 
which can at most vary on the t2 scale. 

The first nontrivial one-particle equation is 

a1'2 ) a1'O arO) n J acp agel) -- + --+ - = - dxdv2 -·--· ato atl at2 m ax aVI 

By requiring that the solutions for f (2), f (I) are non­
secular on the time scales to, tl , respectively, one 
obtains the following three equations: 

arO) = n
2 
J dx dV

2 
acp.~ (~ - ~)rO)tO) 

at2 m ax aVI aVl aV2 

(9) 

(10) 

f'" acp 
X dT-a ,[x' = x - VI2T]. 

,. X 
(11) 

The first equation can be reduced to the familiar 
form of the Fokker-Planck equation.3 Equation (11) 
describes the transient behavior of the one-particle 
distribution towards the kinetic regime. It can be 
shown9 that 

1'2)(tO) .-...- l/t~ as to ~ ro. (12) 

It should be noted that this result rests very 
heavily on the behavior of g(1) at small IV121. We 
shall see in the next section that the solution for 
gO) as given above is not valid for Vl2 ~ O. With 
the correct g (I) in the small relative velocity region, 
we shall show that the decay of 1'2) in time is 
actually much faster than that given in Eq. (12). 

3,2 Solution for g(2) (x, Va V2 , to) 

The equation for the second-order g function is 

( a a) (2) 1 dcp ( a a ) 
ato + V12 ' ax g = m dx' aV

I 
- aV

2 

X [1(0)(1)10 )(2) + 1'°)(2)1'1)(1) + g(l)(12, to)] 

n J dcp [arO) + m d~ dVa d~' aV
I 

g(l)(~ - x, 23, to) 

atO) ] 
- aV

2 
g(l)(x - ~, 13, to) • (13) 

This can be written in the following form: 

(a~o + VI2 ' :X)g(2) = Q(x, to), (14) 

where Q is a known function. From the right-hand 
side of Eq. (13), it is seen that Q consists of three 
parts: 

(1) Correction terms to 1<0>, i.e., terms con­
taining 1'1). 

(2) Iteration term containing gel). 
(3) Three-particle terms. 

The solution of Eq. (14) is as follows: 

g'2) = il

• dTQ(X - V12 T, to - T). (15) 

In examining the asymptotic time behavior of g (2) , 

i.e., its behavior in the limit to ~ ro, it is noted 
that the solution due the first group of terms is 
similar to that in g(l" which is well behaved. The 
solution in Eq. (15) due to the iteration terms can 
be put into the following two parts: 

(1) 

X ['-. dT' ;:, [x' = x - V12(T + T')] (16) 

[where ab : cd = (a·d)(b·c)]. For any given 
time to, the domain of the double time integral 
in the TT'-plane is an isosceles triangle as shown 
in :Fig. l(a). As to ~ 00, this domain of integra-

~T' 
t 

(a) (b) 

FIG. 1. 
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tion goes into the first-quarter plane. Because 
of the assumption of a repulsive potential and 
the finiteness of the range of the potential, the 
integrand is different from zero only in a certain 
region on this quarter plane. The integral in Eq. 
(16) will be finite as to -+ co (nonsecular) if this 
region of nonzero integrand is finite. For any 
given value of x and V,2 (:;eO), the region of non­
zero integrand is easily determined. It is shown 
in Fig. l(a) as the shaded area. The width of the 
stripes shown in Fig. l(a) is determined by the 
value IV,2 1, range of potential and the angle be­
tween x and V,2, while the location of the strips 
is determined by Ixl. As V,2 -+ 0, the region of 
nonzero integrand expands and fills up the entire 
quarter plane. The integral in Eq. (16) becomes 
doubly infinite. 

To see the nature of the singularity at V,2 = 0 
as to -+ co, we introduce, for any small but finite 
V,2, the following transformation: 

IVI21 T = s, IVI21 T' = s'. (17) 

The double integral over time becomes 

IV~212 II ds ds' ::' [x' = x - e12s] 

X ::, [x' = x - e,2(s + s')] , 

where e'2 = VI2/lv,21 and the domain of integration 
is over the first quarter of the ss' -plane. The inte­
gral now is finite and we see that the singularity 
at V12 = 0 is like 1/IV,2 12. We substitute this result 
into Eq. (16), noting that 

C/~, - a~JtO)(1)tO)(2)""" V,2 for small IVI21· 

We then see that the solution for g(Z)(x, v" V2tO) 
has singularities of the form 

1/lvIzI2, 1/lvI21 

at V,2 = 0 in the limit of to -+ co. 

The term we are considering now is part of the 
first iteration on the force of interaction. It is not 
difficult to see that on each further iteration, we 
shall introduce the operator 

J dT exp [-TV 2 • .!LJ dcf>.(~ - ~) 
I ax dx av, aV2 

onto the known result for the g function. This 
operator brings in further factors of 1/lvIzl2 and 
1/lv121 for V,2 -+ O. The formal series solution for 
the g function is then not asymptotic in character'z 

12 That is, each term will be bigger than its preceding term 
in the series at this singular point. 

near Iv,Z \ = o. It is readily seen that for the series 
solution to be asymptotic, we must have 

(18) 

In the remaining part of the present section we 
shall consider the solution for the correlations in 
such a region of the relative velocity space that 
Eq. (18) holds. For the relative velocity of the 
order et, a different asymptotic representation will 
be given in the following section. 

J',. 1"-' d
2

cf> 
X 0 dT 0 dT'T' dx'dx' [x' = x - V12(T + T')] 

(19) 

The domain of nonzero integrand is shown in 
Fig. l(b) as the shaded area. It is seen that the 
integral in Eq. (19) is not secular for any finite V'Z, 
Near IVIZI = 0, we may use the same transformation 
as before, Eq. (17). It is found that the whole term 
behaves like IV,21-" IV,2 1-z as V,2 -+ O. 

The solution for g (Z) due to one of the three­
particle terms is as follows: 

n z I d~ dV3 de/>. atO) (~ - ~)tO)tO) 
m a~ av, avz aV3 

1'· 1"-' de/> X 0 dT 0 dT' dx' [x' = ~ - x + V ,2 T - V23 T']. 

(20) 

For any given values of x and V12 it is seen that the 
region of nonzero integrand is limited in the TT' 
plane for general values of ~ and V23 [Fig. 2(a)]. 

L----- r ' 
(a) (b) 

FIG. 2. 

However, as the direction of V23 comes closer and 
closer to that of V ,2, this region stretches out to 
become longer and longer. Finally at V23 II V12 the 
region becomes a strip extending to infinity. The 
TT'-integral in Eq. (20) is thus singly infinite in 
the limit as to -+ co. However, this secularity is 
integrable in the V3 integration. In fact, as is shown 
in Fig. 2(b), the length of the above strip varies 
like 1/8 as 8 -+ 0, where 8 is the angle between V23 

and V,2 . Integration over the solid angle in the 
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velocity (V23) space makes this singularity disappear, 
i.e., 

f l. d.1-'.· f' . (j sm 8 8""'1' IS mIte. 

We mention in passing that Eq. (20) has a sin­
gularity IVI2rl at V I2 = 0 in the limit of to ~ 00. 

However, in the solution for g(2) (x,12, to) of Eq. 
(15), the two three-particle terms cancel each other 
in this limit. 

We conclude the present section with the follow­
ing statement: The solution for g(2) (x, 12, to) with 
zero initial value is finite in the limit to ~ 00 

as long as we keep V I2 » ei . Calling the region 
V I2 » ei the outer region, we see that up to second 
order the two-particle correlation function, after a 
time of order of that between collisions, becomes a 
functional of the one-particle distribution function 
as far as its time dependence is concerned. 

3,3 Solution for g(3)(X, 12, t) 

The equation governing the third-order g func­
tion is 

( 
iJ iJ) (3) iJg (1) 

iJt
o 

+ V12 ' iJx g (x, VI, V2, to) + at; 

= ~ :'(iJ~1 - !J[g(2)(12) + to)(I)t2)(2, to) 

+ f(1) (1)f{1) (2) + r) (2)t 2
) (1, to)] 

n f deb {iJf (1) (1) + m d~ dV 3 d~' iJv
l 

g (~- x, 23, to) 

iJf(1) iJr) 
- iJv

2 
g(l)(x - ~, 13, to) + iJv

l 
g(2)(~ - x, 23, to) 

iJtO) (2) iJ (2) 
- -!l- g (x - ~, 13, to) + !I.. h (x,~, 123, to) 

uV2 uVI 

- iJ~2 h(2)(X, x - ~, 123, to)}. (21) 

We carry the two-particle correlation function 
up to this order for the following reasons: 

(1) The multiple-time-scale theory first comes 
into effect in the solution for the g function through 
the term iJg(l) liJt2 • Note that the dependence of 
g (1) on t2 is completely known through the one­
particle function to). 

(2) t 2
) is fast-time-dependent. 

(3) The three-particle correlation function ap­
pears. 

We shall leave out the analysis of the solution 
for g (3) due to all terms except those three groups 

of terms listed above, i.e., 

(1) iJg (1) I iJt2; its contribution to g (3) is 

_l (~ - ~) ~ r)t<O) 
m iJvI iJv2 iJt2 

1
10 1lo-r deb 

X ° dr ° dr' dx' [x' = x - V12(r + r')]. (22) 

For any finite x and V12' this remains finite in the 
limit to ~ 00. However, it is secular if we choose 

x = [(l/a)v12to + "(] ~ 00, (23) 

where a ;:::: 0 and "( is a constant related to the 
range of the potential. The nature of this kind of 
secularity will be considered in more detail in the 
next paragraph. 

(2) The solution of g(3) due to one of the terms 
containing t 2

) is as follows: 

n 110 

d4> ( iJ iJ ) --3 dr-, [x' = x - Var]' - --
m ° dx iJv1 iJv2 

X f d~ dV3 d4>,~ (~ - ~)t<O)r)f(O) 
d~ iJv2 iJv2 iJva 

X Lo-r dr' J~ dr" :J:, [x' = ~ - V2S r"]. (24) 

The domain of the triple time integration is 
shown in Fig. 3(a), As to ~ 00, this becomes a 
wedge-shaped space as indicated in Fig. 3(b). Since 

r 
(a) 

T 

FIG. 3. 
(b) 

~ is bonded (finite) because of the factor d4>ld~, 
it is seen that the region of nonzero integrand is 
finite as shown by the zigzag path in Fig. 3(b). 

(3) The contribution from the three-particle cor­
relation is 

nf deb iJ - d~dv -,-
m 3 d~ iJVI 

(25) 

In order to analyze the asymptotic behavior of this 
expression, we have first to solve for h (2) through 
Eq. (7). This, in principle, is simple. However the 
expression for h (2) is rather lengthy, and we shall 
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not include it here. Suffice to say that, for any finite 
value of :z: and v12, all terms in Eq. (25) are non­
secular. However, if we let 

x = [(1/a)vI2 to + "(] ---7 (Xl (23) 

one of the terms in Eq. (25), which has the following 
form, becomes secular: 

110 110-- drf> 
X 0 dT 0 dT' dx' [x' = ~ - V I3 T'] 

X (~- ~){(~ - ~)t'°)r)f(O) 
aVI aV2 aVI aV2 

X LO----' dT" ;::, [x' = x - V12(T + T' + T")]}' 

(26) 

Graphically, the nonzero integrand in Eq. (26) 
is given by the zigzag path in Fig. 4. In the region 

X T' 

t. 

FIG. 4. 

where Eq. (23) holds, we see that Eq. (26) becomes 
singly infinite. This local secularity has exactly the 
same nature as the one caused earlier by ag (1) / at2 • 

Making use of the Fokker-Planck equation, it can 
be shown that the region of nonzero integrand in 
Eq. (22) is the zigzag path in Fig. 5. It is to be noted 

FIG. 5. 
/-~-=--'T' 

K Yo r----;/Z__--

that the nonzero regions in the two figures are 
different; therefore the two secular terms in the 
solution for g (3) do not cancel each other exactly. 

The failure of exact cancellation of the secularities 
can also be seen by carrying out Eq. (22) fully and 
comparing it with Eq. (26). 

3.4 Secularity at x = [(1/a)vI2to + 'Y] 

We have just shown that g(3) has a secular term 
(besides the secularity at small relative velocity) at 

x = [(l/a)v12to + "(] ---7 (Xl, with a ~ 1. 

In order to have this kind of secularity, we see that 

we need a very careful arrangement of the inter­
acting particles (both in velocities and positions). 
The particles have to be of large separation at time 
to and with their relative velocity oriented in such 
a way that they are in collision at the initial moment 
to = O. It is not difficult to see that the angle be­
tween x and V l2 should go as l/\x\ in the limit 
\x\ ---7 (Xl. If we focus our interest on the one-particle 
kinetic equation, which contains a velocity inte­
gration over the two-particle correlation, we see 
that up to g(3), the resulting one-particle equation 
is still well behaved. Moreover, since the pair po­
tential has been assumed to have finite range, in 
the integral term of the one-particle equations, i.e., 

f drp ag 
dx dV2 dx' av

1
' 

the contribution of g for any \x\ greater than the 
range of the potential is strongly de-emphasized. 
We therefore conclude that as far as the one­
particle equation is concerned, the second kind of 
secularity discussed in the present section can 
be completely ignored. 

To analyze the nature of the second secularity, 
we re-examine the behavior of g (1), the lowest order 
nontrivial correlation function, we see that for the 
above arrangement in velocity and position, g (1) is 
not secular but it does not vanish for large separa­
tion between particles. We recall that g (1) is a solu­
tion based on two interacting particles only. If g (1) 

is infinite in range, the presence of a third particle 
cannot be neglected. However, as we have seen, the 
region where g (1) has an infinite range is very limited; 
the angle between the relative velocity and the 
relative position vector goes like l/x as x ---7 (Xl. 

If we average over any small but finite angle in 
the relative velocity space, it is easily seen that g (1) 

becomes finite in range, in fact, 

g(l) I'"'o.J 1/\x\2 as \x\ ---7 (Xl. (27) 

The averaging process can be justified in the 
following way: Our ultimate interest is in the one­
particle distribution function, which is affected by 
the correlation function only through the latter's 
gross properties. This is true because in obtaining 
the equation for the one-particle function, we always 
integrate over the relative velocity space, including 
the angular integration needed for the above 
averaging process. With this averaging, we see that 
g (3) is nonsecular and 

g(3) I'"'o.J l/\X\ as \xl ---7 (Xl. (28) 

These asymptotic formulas for the g's as x ---7 (Xl 
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provide an indication of the validity of our formal 
expansion, i.e., 

f3 g(3) /fg(l) «1, or \x\« l/l. (29) 

The corresponding inequality for the time variable is 

to « 1/ f2 for any finite \v12 \. (30) 

It is recalled from our nondimensionalization that 
the mean free path and the mean free time in the 
system are of the order of 1/ f2. From the inequalities 
in Eqs. (29) and (30) we see that in order to obtain 
a uniformly asymptotic representation of the cor­
relation function, we have to rescale the hierarchy 
again in this local region by 

x = (IN)X, t = (IN)T. 

The new equations are complicated and will not 
be considered in any detail in view of our interest 
in the one-particle kinetic equation. However, a 
conclusion one can draw at this state is that the 
correlation functions will now change in the kinetic 
time scale (1/ l) in their own right. 

In what follows we shall ignore the second secu­
larity and concentrate our attention on the secularity 
at small relative velocities only. It is true that the 
velocity integration in the one-particle equation will 
also smooth out some singularities at small V 12 • 

However, as we go to a higher order, e.g., g(3), the 
effect of the singularity at small V l2 will definitely 
come in. The detailed analysis at small \VI2 \ and 
the correct higher order one-particle kinetic equa­
tion will be given in the following two sections. 

4. EXPANSION FOR SMALL RELATIVE 
VELOCITIES 

The weak coupling expansion we have developed 
in the previous section breaks down when the rela­
tive velocities among a group of particles under 
consideration become small. We have shown that 
the size of the relative velocities has to be much 
larger than fl in order that the series obtained be 
asymptotic in character. This criterion of size of 
the relative velocity can also be obtained by a 
simple argument based on the orbit of two inter­
acting particles. Using the nondimensional form 
given in the last section, the equation of motion of 
two particles is 

x=d 
where f is the force of order unity. The gain of 
velocity due to the interaction is of order ft, while 
the distance traversed by the particle due to this 
velocity is ft2. Thus, for a particle with sufficiently 

small initial relative velocity, the time to traverse 
the range of the potential is of order f -l, and the 
change of its velocity during this flight is of order fl. 

Therefore, the weak-interaction approximation 
breaks down when the initial relative velocity is 
of order f!. We see also from this simple argument 
that the fast time in the problem gets "slower" for 
particles having smaller relative velocity. Neverthe­
less, compared to the kinetic time scale f-

2
, this 

"slower" fast time is still fast enough for the develop­
ment of "kineticity." 

To study the solution of the hierarchy equation 
for small relative velocity, we shall use the tech­
nique of the boundary layer analysis in fluid me­
chanics. As shown in the last paragraph, the region 
where the ordinary weak coupling expansion becomes 
invalid is very small (of order ft). In order to in­
vestigate the structure inside the layer, we open up 
this thin layer by the following transformationl3

: 

V l2 = f!W12 and thus a~ = ~ a~ , (31) 
V12 f W 12 

where W 12 is of order unity for V 12 of order ft. There 
should be corresponding stretching for other rela­
tive velocities. However, we shall concentrate here 
on the lower order approximation of the two-particle 
correlation functions only. For a detailed analysis 
to higher order, we refer to Ref. 9. 

Using the scaling of Eq. (31) in the two-particle 
equation (6), it is easy to get the ordering of various 
terms in Eq. (6), except for the following two terms: 

We have assumed that t(2) is Taylor expandable 
around VI for small V12 ; thus we see that the first 
term is of order fl, while the second one is of order 
unity for Vl 2 of order ft. 

The two-particle equation appropriate for small 
V 12 is as follows: 

{a} 1dc/> at
t 
+ H(12) g(x, W12, VI, tt) - m dx 

X (fl ~ + 2 _a_)t(1)t(2) = fl ~ J d~ dV13 de/> 
aVI aW12 m a~ 

[
at!) at<2) ] 

X (lv, g(~ - x, 23) + (lv
2 

g(x - ~, 13) 

- : J d~ dV13 ~. [ (ft a~1 + a!Jh(X'~' 123) 

+ -a a hex, x - ~, 123)J. 
W12 

(32) 

18 K. O. Friedrichs, Bull. Am. Math. Soc., 61, 485 (1955). 
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where 

and 

H(12) = W12'~ - .l li<P'(fi ~ + 2 _d_). 
dX m dx dVI dWl2 

We recall that the second term on the left side of 
Eq. (32) is of order f. 

Instead of expanding all functions in series of f 

we shall now expand them in powers of ft, e.g., 

9 = g<O) + fig<i) + fg(1) + f!g<tJ + .... 
Under the assumption of zero initial correlation 

functions, the lowest significant approximation is 

{d~i + H(12)}g<1l(x, VI, w12 , ti) 

= !.l li<P'(fi ~ + 2 _d_)f(O) (l)r) (2). 
f m dx dV I awl2 

(33) 

Note the term on the right side is of order unity. 
This equation differs from the corresponding one 
for finite V 12• First, the interaction between particles 
is no longer treated as a small perturbation. Second, 
the fast time in the problem gets slower. These are 
what one would expect from the simple illustration 
given at the beginning of the section. 

The solution of Eq. (33) is formally as follows: 

! [8_ li(12) - 1]1'°) (1)1'°) (2), 
f 

(34) 
where 

8_ /i (12) = exp [- tiH(12)]. 

In spite of the factor 1/ f, 9 (1) is of order unity. This 
is best seen by carrying out the Taylor expansion of 
f (0) (2) in Eq. (33). Then the solution of 9 (1) is 
found as follows: 

g(1)(x, VI, W12 ' ti ) = [8- /i (12) - 1Hw12W12 : A, (35) 

where 

A = r)(1)VV!'0)(1) - Vr)(1)Vr)(1). 

For very large W I 2, we have 

S_.!(12)WI2WI2 = (WI2 + ! ~: ti)(WI2 + !: ti)' 

and 

g(J)(X, VI, WI2) _.lw li<P. At - 1 V li<P t . A - m 12 dx' t - m 12 dx ° . 

which is exactly the value of g~~! (x, VI, VI2, to) as 

IV121 -7 O. We therefore have shown that the solu­
tions for 9 <1) in the two regions go into each other 
at the domain of their common validity. Similar 
analysis can be carried to higher orders. However, 
we shall not go any further here. The interested 
reader should refer to Ref. 9. 

5. KINETIC EQUATIONS OF ONE-PARTICLE 
FUNCTIONS 

We have obtained, in the previous two sections, 
solutions for correlation functions in two distinct 
regions of the relative velocity space. Hereafter we 
shall call the solution in the region of finite relative 
velocities the outer solution and the solution where 
the relative velocity is of the order ft the inner 
solution. In this section, we shall find the matching 
of these two solutions. 

5.1 Rate of Relaxation 

We have mentioned briefly the rate of relaxation 
of a system toward the state governed by the 
Fokker-Planck equation based on the outer solu­
tion for 9 (1) alone. Although g~~~ (x, 12, to) is well 
behaved in the limit to --? <Xl for VI2 small, it does 
not represent the true solution when V I2 becomes 
small. The solution in this inner region, as we know 
from the analysis in the last section, is properly 
approximated by the inner solution gi!) (x, 12, t1)' 
Using gi!) (x, 12, tt) instead of g~!~ (x, 12, to), the 
integral which gives the rate of relaxation becomes 
(where t1 = Eit) 

d J d d de/> {(1)( 12) (1) dV
I

' X VI2 dX gin X, ,tt - gin (X, 12, <Xl)} 

1 d J de/> = -; dV
I

' dx dVI2 dX (8-/t-8-oo)!'0)(1)!'0)(1). (36) 

The pair potential has been assumed to have a 
finite range. At time til because of the factor de/>/dx 
in Eq. (36), the particle 2 must be within the range 
of particle 1 in order for the whole expression to be 
different from zero. For sufficiently large tt, the 
streaming operator 8_ 1,;, will definitely bring 
particle 2 outside the range of particle 1 under the 
assumption of repulsive force. If the pair potential 
has an exponential-like tail, the expression in Eq. 
(36) will decay exponentially as tt --? <Xl. Therefore, 
in that case, the approach to the kinetic stage is 
exponentially fast in the time scale of tt. 

5.2 One-Particle Equation 

We shall now consider the higher order one­
particle kinetic equation. The hierarchy equation 
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for the one-particle distribution function is 

~ = E.!!. J dx dv d4> .~. (5) at m 12 dx aVI 

We shall neglect the transient behavior of the higher 
order one-particle distribution function on the fast 
time scales to and ti' Thus the value of 0 in Eq. (5) 
will be the asymptotic value only, i.e., oCto ~ <Xl, 
tt ~ <Xl). Since 0 has two distinct representations 
in two different regions of \v12 \, the integral 

LCD V~2 dV120(X, VI, v12 , t2) 

is split up into two parts, i.e., 

[with Vn = IV121J 

i CD 

V~2 dV120(x, :1.2) = f V~2 dVI2gin(X, :1.2) 

+ {O V~2 dVnOout(x, 12), 

where 6 is chosen in such a way that 

Ei « 6 « 1. 

(37) 

(38) 

We can then use the outer solution Oout in the second 
integral of Eq. (37), and the inner solution Oin in 
the first one. The order, in terms of expansion param­
eter E, of the right side of Eq. (37) is determined 
mainly by the behavior of Oout(x, 12) near V12 = O. 
Suppose O(x, VI, V 12) goes like 1/v~2 as \v12 \ ~ 0, 
the inner solution must be of order (1/ Ei)4 = 1/ l 
so that the two solutions can be matched together 
around \VI2 \ roo..J Et. Therefore, 

f V~2 dV I20(X, 12) + 1'" V~2 dv120(x, 12) 

i 1~/'1 
= ; W~2 dW120in(X, w 12) 

E 0 

In the second and fourth integrals, the integrand 
can be expanded in the following ways: 

( ) _ F(O) + F'(O) + 1: F"(O) + 
gout X, Vl2 - v4 v3 2 v2 

12 12 12 

Then 

= _F(O) _ F'(O) 1'" dW12 
6 ~/.I W12 

t 1'" - ~ F"(O) 0 dWl2 + !F"(O) 6 + 

and 

11 2 F~ l"'F~ - V12 dVl200ut(X, Vn) = -~- - -2- dVn 
o 0 0 V12 

- F'(O) 1'" dV12 
- !F"(O) 6 + 

o Vn 

Thus 

i'" V~2 dVI20(X, 12) 

= i 1'" [W~2gin(X, w12) - tEF"(O)] dW12 
E 0 

or 

i'" V~2 dVI2g(X, 12) 

= ~ 1'" [W~2gin(X, W12) - !EF"(O)] dWl2 + iF'(O) In E 
E 0 

1'" [ 2 F'(O) F(O)] + vngout(X, V12) - -- - -2 - dVl2' 
o Vn Vl2 

The F(O), F'(O), F"(O) terms in the square brackets 
were introduced such that the infinite integrals 
become well defined. We may introduce the symbol 
cf~ standing for an infinite integral with a proper 
balancing term at the divergent end of the limit of 
the integration such as the first and third integral 
in the last formula. Then 

(39) 

where 

gout ~ F(vI2)/v~2 as V12 ~ O. 

Similarly we can work out the expression for the 
integral when Oout has different behavior at Vl2 = O. 
For example 
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(40) 

gout ----+ F(vI2) : ED V~2 dVl2g 

= 1" V~2 dV12gout + Et 1" W~2 dWl2gin' 

° C ° 
Using (39) and (40) in the integral of (5), we obtain 
the coefficients of the various orders of E as follows: 

i :.!!:. J dx dv drp. ag~!! 
m 12 dx aVI 

l : : J dx dVl2 :. a~:! 

/12 :.!!:. J dx dW
l2 

drp. ag~!) 
me dx aVI 

(41) 

where dn12 is the angular integration of V12, and 
Faa, Fa. are the coefficients of 1/jv12 j3, 1/jV12 j4 in g~~!. 
Note that the coefficient of //2 actually includes 
terms of order Ei. This is because g~!), as defined, 9 

is of order unity plus terms of order Ei. 

Using the first term of (41) in (5), we recover on 
the t2 time scale, the Fokker-Planck equation 

afO) n J drp ag(l) 
-- = - dx dv -. ---2!!! (t ----+ CD). at2 m 12 dx aVI ° (42) 

For the higher-order one-particle distribution func­
tion the form of the series in terms of E is dictated 
by (41); we have 

f(v l , t2 ) = fO) + Ef{l) + Eff t ) 

+ lIn Ef~2) + lf2) + 
Using (5), we obtain the correction equations to 

the Fokker-Planck equation on the t2 scale as 
follows: 

al{l) n J drp ag~!! 
at

2 
= m dx dV12 dx' av

l 
' 

afl) n J de/> ag~!) 
--;-t = - dx dWl2 d-'-,,-, 

u 2 me X uVI (43) 
iJf~2) n J drp a 
at

2 
= 2m dx dnl2 dx' aV

I 
[F~4 + Fas] , 

af2) n J drp ag~~! -- = - dxdvl2 -·--· at2 me dx aVI 

In principle, one can go on to higher orders suc­
cessively. However, since the logarithmic terms will 
appear also in the correlation functions, the nature 
of the series in terms of E becomes very complicated 
and the lengthy algebra is also formidable. 

5.3 Termination of Time Scales 

Since we are dealing with a system with spatial 
homogeneity, we know, by the H-theorem for the 
Fokker-Planck equation, that the system reaches 
thermal equilibrium on the time scale t2 • The de­
pendence of all distribution functions on slower 
time scales, t3 , t4 , ••• should be trivial from a 
purely physical point of view. We recall that in 
the example given in the Appendix, the termination 
was automatic through the criterion of "nonsecu­
larity." In the kinetic problem this sort of demon­
stration is more involved, since the solution of the 
lowest order equation is not so easy to obtain as 
in the case of the simple examples. To see this, we 
shall consider only the first correction to the Fokker­
Planck equation, i.e., the equation for f (I). Instead 
of terminating the time scale at t2 , we use 

a a a 
-----+- + E-' at2 at2 ata 

The first equation in (43) then becomes 

- + - = .!!:. dx dv ~. agout {teo) to) I (44) 
atO ) af(O) J ,1.1.. (2) 

CJt2 at3 m 12 dx aVI ' 

where g~!! {f (0), 1'1) I implies a functional de­
pendence of g~!! on f(O) and 1'1). If we want to show 
that 1'0) does not vary on the t3 scale, we must 
demonstrate that the second term on the left side 
of Eq. (44) is secular in the solution for 1'1) on the 
time scale t2 • For this purpose we must first obtain 
the t2 dependence of 1'0), which amounts to the 
solution of the Fokker-Planck equation. In general, 
this is quite difficult. However, in examining the 
secularity of the solutions for f (1) we are interested 
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only in the long-time behavior of each term in the 
solution to on the t2 scale. The asymptotic solution 
of the Fokker-Planck equation (42) is simply the 
t2-time-independent Maxwellian function. We first 
note that the integral term in Eq. (53) can be 
written in two parts, i.e., 

CI[f(l), to)] + C2 [f(0)(1), to)(2), r)(3)]. 

The first term is exactly as in the Fokker-Planck 
collision integral except that in one place f (0) is 
replaced by f (1 ). The second term depends on to) 
only and it vanishes when to) is Maxwellian. It is 
then seen that in the limit of t2 ~ co, the only secular 
term in Eq. (44) is 

(ajata)f(O)(vl, t2 , ta). 

Therefore to) is required to be independent of ta. 
This sort of argument presumably can be carried 

on further. The termination of the time scale at t2 
for a homogeneous system is thus rational within 
the framework of the multiple-time-scale method. 

6. THE EFFECT OF INITIAL CORRELATIONS 

Up to now we have been investigating only the 
part of the correlation that arises because of the 
interaction between particles. It is seen that such 
correlations become functionals of the one-particle 
distribution in a time of order of the duration of a 
collision (except for the type of local secularity dis­
cussed in Sec. 3). This functional property is a 
necessary condition for the system to be describable 
by a one-particle kinetic equation on a time scale 
long compared with the duration of a collision. To 
ensure the one-particle kineticity, we must, in ad­
dition, examine the effect of initial correlations. If 
we accept the kinetic equation obtained in the 
absence of initial correlations as the right kinetic 
equation, which is logical, we must choose the initial 
correlations in such a way that the effect of these 
initial data on the one-particle function vanishes 
in a time of order of the duration of a collision. The 
necessary and sufficient conditions on the initial 
correlations such that the foregoing requirement is 
met is of primary importance in kinetic theory. 
However, since the initial correlations are functions 
of many variables (for example, the two-particle 
correlation is a function of three independent 
vectorial variables x, VI, V12) the search for a neces­
sary and sufficient condition is quite difficult. In 
what follows we shall restrict ourselves to a suffi­
ciency condition only. 

The lower-order equations for the one-particle 
functions are 

a!'O)jato = 0, (45) 

at (1) a!,O) _ n J dq, ag(O) 
ato + at

l 
- m dx dVl 2 dx' Ov

l 
• 

(46) 

These equations differ from those without initial 
correlation by the integral term in (46). The zero­
order correlation g (0) is governed by the following 
equationsl4

: 

(1) Outer region \v12 \ » e1 

ag(O) ag(O) 
at; + V12'ax = o. (47) 

(2) Inner region \VI2 \ "" e! 

ag(O) ag(O) 1 acp (a a ) -- +wI2,-- - --, e1 - + 2 -- g'0) = o. 
atl ax max Ov1 Ow12 

(48) 

These equations are homogeneous. The solutions 
of them are 

g~~~(x, 12, to) = g(O)(x - VI2 tO, 12, to = 0), (49) 

g~~)(x, 12, tt) = S-ti(12)g(x, 12, tt = 0). (50) 

We may also say simply that the zeroth-order cor­
relation g (0) remains constant following the charac­
teristic lines of the g (0) equations, respectively. Al­
though the correlation persists as the time goes on, 
its effect on the one-particle function is greatly de­
emphasized by the nature of the integral in (46). 
Similar integrals (over velocity space V12 only) with 
the g (0) given by the free-streaming equation (47) 
have been analyzed by Van Kampenl6 in the 
problem of Landau damping of plasma oscillations. 
The process of this damping is usually referred to as 
"phase mixing." We note that there are two new 
features in the integral of (46). First, there is an 
additional integration in x space with a finite-range 
potential factor dcp/dx. Second, the integration over 
\v12 \ has to be split into two parts, i.e., 

J 
dq, ag(O) 

dx dV12 dx' aV
I 

- ~'J d dQ dcp {[. (0) + ['" (D)} 2 d - aV
I 

x 12 dx J
o 

gin J. gout V 12 V12 

(51) 

where e1 « (j « 1. Let us first consider the second 
integral in (51): 

J dx dQ12 :: i'" V~2 dV12g~~~. (52) 

14 We neglect the three-particle correlation h(D) here for 
simplicity. The effect of h(D) will be examined at the end of 
this section. 

15 N. Van Kampen, Physica 21,949 (1955). 
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Let us assume that the initial correlation has a 
finite range in x space. The integrand of (52) is 
different from zero only when the two particles 
under consideration are within the range of the force 
at time to (because of de/>/dx) and also within the 
range of correlation at the initial time - to [because 
of g (0) (x - Vl2 to, to = 0) J. Therefore, for sufficiently 
large to (say, 1/ e) the integral is always zero pro­
vided IV121 is not too small. We have required, how­
ever, that the lower limit of the integration be much 
greater than el , thus IV121 to » e-! and the integral 
(52) is zero in the limit as to ----+ ex> for all permissible 
values of IV12I. It is readily seen that the decay is 
exponential if the assumed initial correlation has 
an exponential tail. We therefore have from (46) 
and (51) that 

at!) atl ) afO
) -+-+-ato atl atl 

n a J de/> 1° 2 (0) = - -';-0 dx dn l2 -d Vl 2 dVl2gin 
m vV I X 0 

+ exponential decay term in to, 

or 

at O
} /ato decays exponentially in to, 

(53) 

We now ask the question whether two particles 
can stay within their range of correlation (we assume 
that the range of correlation is the same order of 
magnitude compared as the range of the force) 
forever. Starting with Ixl < ro, which is required 
by de/>/dx, we have seen that the time to travel 
across the range of force for particles having rela­
tive velocities of order et is of order e-t . Thus, in 
the limit as tl ----+ ex> , the particles initially within 
the range of force will be definitely outside the 
range of force. The gl:) in (54) goes to zero expo­
nentially if the initial g (0) (x, VI, V12, to = 0) has an 
exponential tail in its x dependence. Therefore, 

at(t) /att decays exponentially in tl , 

and 

afO
} jatl = o. 

We have so far disregarded the relative velocity 
dependence of the initial correlation g(O)(x, VI, V12, 

to = 0) (its VI dependence is not of importance in 
the discussion of the approach to the kinetic regime). 

It is seen from (52) that a strong singularity of 
g(O)(x, VI, V 12, to = 0) at Vl2 = 0 might cause trouble 
in the integral. Supposing that the spatial de­
pendence of g(O) (x - Vl2 to, 0) at large to has the 
exponential form e -v"", it is easy to see that any 
algebraic singularity in V l2 = 0 will not change the 
conclusion we have drawn before. Therefore the 
effect of the initial correlation on the one-particle 
equation vanishes as long as the following conditions 
are satisfied: 

(1) The interaction potential is repulsive and has 
a finite range. 

(2) The initial correlation has a finite range and 
drops off exponentially as x ----+ ex>. 

(3) The relative velocity dependence of g(O)(x, 
VI, V12, to = 0) is not exponentially large at V12 = o. 

These conditions are only sufficient ones. One can 
certainly relax condition (2) with some strengthening 
of condition (3). After exhausting all the possible 
combinations, perhaps one could obtain a necessary 
condition on the initial correlation such that the 
long-time behavior of the system is independent of 
the initial data imposed on the system. 

The consideration of both inner and outer solu­
tions for g (0) in (51) is essential. Since the outer 
solution describes the free motion of the particles, 
the velocity and thus the relative velocity of the 
particles remains constant in the course of time. 
The mixing process provided by the velocity inte­
gral in (51) becomes more and more ineffective as 
the relative velocity of the particles goes to zero. 
However, when the relative velocity between two 
particles becomes small, the change of the momen­
tum due to their interaction (even though it is weak) 
can no longer be neglected. It is such interactions 
which keep the relative velocity from vanishing 
after each encounter of the particles. This velocity 
provides enough mixing of the initial data on the 
time scale tt. It is easily seen that had we considered 
the outer solution alone, the condition on the initial 
correlation would have been much more stringent.8 

The full equation of the zeroth-order g (0) in the 
inner region is 

ag(O} ag(O) 2 ae/> ag(O) -+w 0-----0-
att 12 ax max aW12 

= !!:. J dx dva[ae/>(Xl - xa) o~ 
m aXI aVI 

+ ae/>(x2 - xa) o~Jh(O}(123). 
aX2 ()v2 

If we impose the same sufficient conditions on 
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h (0) (x, ~, 123, to = 0), it is obvious that the integral 
terms on the right side of the equation vanish in 
the limit as to ~ co, tl ~ co. 

The analysis for the higher orders can be carried 
out in a similar fashion. As long as the sufficiency 
conditions are met, the effect of the initial correla­
tions will wash away on the fast time scales. 

7. QUESTION OF IRREVERSIBILITY 

In the previous section we have seen how the 
effect of the initial correlations on the one-particle 
function are mixed out during a time interval of 
the order of the collision time. At first glance, such 
mixing of the initial data is analogous to usual 
relaxation processes. One therefore tends to at­
tribute to it the irreversible character of the resulting 
Fokker-Planck equation or, more generally, the ir­
reversible nature of the kinetic equation. This, how­
ever, is not true. Let us first note the following two 
facts: 

(1) The mixing process does not have a preferred 
direction in time. The equations for the correlations 
(47) and (48) are time reversible, i.e., they are in­
variant under the transformation t ~ -t and 
v ~ -v. It is thus not difficult to see that, with 
the sufficient conditions specified before, the integral 
in the equation 

af(l) atl) atO) n J d4> ag(O) 
ato + at; + at; = m dx dV12 dx' ov

1 

also vanishes in the limit as to ~ - co. This argu­
ment apparently applies to the higher-order equa­
tions too. In fact, the equations of the hierarchy 
up to this stage are still time-reversible. 

(2) The initial correlations themselves do not 
phase-mix, but only their effect on the one-particle 
function does phase-mixing and dies out in the 
long-time limit. This seems to correspond to the 
Ehrenfest's coarse-graining, which, by itself, is not 
enough to ensure that the system evolves with a 
preferred direction of time.16 

Although the mixing mechanism, as we have just 
pointed out, is not responsible for the irreversibility 
of the kinetic equation, it does give one of its im­
portant properties, independence of the initial in­
formation on the correlation functions. 

To single out exactly where the irreversible nature 
of the kinetic equation has been introduced, we shall 
concentrate our attention on the equation 
at2) att) atl) atO) n J d4> ag(l) 
at: + atl + at: + at

2 
= m dx dV12 dx' aV

1 
• 

18 See Ref. 10, p. 85, for example. 

For our present purpose we shall ignore the terms 
art) lOt, and arl) jOt1 • Using the creation part of 
g!!~ only, we obtain 

at2
) ar) n a 

--+--=-2-
ato at2 m aV1 

x J dx dv d4> (~ - ~)f(O)f(O) 
12 dx aV1 aV2 

1'· dct> 
X 0 dT dx' [x' = x - V12T]. (55) 

This equation is still invariant under the time­
reversal transformation t ~ -t (with t2 ~ -t2) 
and v ~ -v. The kinetic equation (of the lowest 
order) is obtained by requiring that the solution 
of Eq. (55) be nonsecular in the limit of to ~ + co, 

i.e., 

f'" d4> 
X dT d---' [x' = x - V12T], 

'. x 
(56) 

1'" d4> 
X 0 dT dx' [x' = x - V12T]. (57) 

Neither of these equations is invariant under the 
time-reversal transformation. Thus it is seen that 
the requirement of nonsecularity of the solution of 
Eq. (55) in the limit to ~ co picks out a special 
class of solutions which is governed by the irre­
versible equations (56) and (57). Our special interest 
is, of course, centered on Eq. (56), which carried 
the system to thermal equilibrium in the time scale 
of order of the mean free Hight time of the particles. 
Mathematically, one has an equal right to seek a 
solution of Eq. (55) which is nonsecular in the limit 
of to ~ - co. The corresponding time-irreversible 
equation obtained in this way is exactly the same 
as Eq. (56) except for a minus sign. This equation 
does not approach thermal equilibrium in the di­
rection of positive t2 • From the physical point of 
view, one can exclude the latter equation by arguing 
that the system is prepared at t = 0, and one is 
interested only in the evolution of the system in the 
positive direction of t. Nevertheless, the philosophical 
subtlety of distinguishing the direction of time still 
remains. We leave this point to our readers who are 
more philosophically inclined. 
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APPENDIX I: METHOD OF MULTIPLE 
TIME SCALES 

We shall consider some simple examples. The 
method as well as the nature of the expansion in 
our work in kinetic theory are well demonstrated 
by the first example 

(a) df/dt = -Ef . (AI) 

The exact solution is trivial (i.e., f = Ae-· t
). 

Supposing that we want to solve (1) approximately 
by a straightforward series representation, we get 

f(t) = A[I - d + h 2j2 + ... 
+ (-I)"E"t"/n! + ... ], (A2) 

where A is an arbitrary constant of integration. 
Even though the series is convergent, it is not 
asymptotic for large t. To get an asymptotic repre­
sentation, we replace the single time coordinate t 
ill (AI) by a sequence of time coordinates to, tl , 

t2 , ••• with dt,,/dt = E" (a "space" of times), i.e., 

(A3) 

We treat to, t l , t2, ••• as independent variables. 
Formally it is equivalent to 

d d d 2 d 
dt = dto + E dtl + E dtl + (A4) 

Using this, we obtain a set of equations for suc­
cessive powers of E. The first equation yields to) = 
to)(tl , t2 , ••• ). We have then from the second 
equation 

1'1) = -[dt'°)/dtl + t'°']to + BCtI, t2 , ... ). (A5) 

To eliminate the secularity we must require the 
coefficient of to to be zero, i.e., 

df(O) jdtl + r) = 0, or 1'0) = A(t2' ... )e-I,. (A6) 

Using this same procedure we obtain the following 
solution: 

(A7) 

where Ao, Bo, '" are pure constants which are de­
termined by the initial values of (0), f (1), f (2), ••• • 

Series (A7) is a uniformly valid asymptotic ex­
pansion. 

The integration "constants" B and A in (A5) 
and (A6) were taken as functions of the appropriate 
time coordinates instead of pure constants. In other 
words, consistently with the imbedding of the time 
coordinate, the initial value, which is a pure con­
stant, is replaced by a set of unknown functions 
which are to be determined by the condition that 
the resulting series solution be asymptotic. It is 
easily checked that this procedure is not essential 
for the present example. One obtains the same result 
by taking A, B, ... to be pure constants only. 
However, for some other problems the replacement 
proves to be essential. This can be demonstrated by 
(A8) 

(b) df/dt = -(E + l)f. (A8) 

We shall not include the simple algebra here. 
It suffices to say that in order to obtain an asymptotic 
representation for (A8) , the allowance for the un­
known functions is necessary. 

While the foregoing examples suggest that it is 
logical to extend the initial values as well as the 
time variable itself, we see that the requirement 
that the series solution be asymptotic gives enough 
constraints on the extended problem and we obtain 
a unique meaningful approximation (exact solution 
in the given examples). This is by no means true 
in general. One can convince himself by our last 
example. 

(c) df/dt = -Er. 
It is not difficult to show that the constraint we 
have used so far is not strong enough to make the 
problem well defined, if unknown functions are 
included. 

There is possible confusion between the multiple­
time-scales method and the PLK method. The latter 
perturbation technique has been known to aero­
dynamicists through Lighthilll7 and KUO.18 They 
applied the method to solve problems of compressible 
flows and viscous boundary layer, respectively. The 
idea was first invented by Poincare in dealing with 
the perturbation of orbits of celestial bodies. The 
basic idea of the method is that, in addition to 
expanding the dependent variable, one expands the 
independent variables also, i.e., 

f = r)(z) + Er)(Z) + "', (A9) 

(AIO) 
17 M. J. Lighthill, Phil. Mag. [7] 40, 1179(1949). 
18 H. S. Tsien, Advance8 in Applied Mechanic8 (Academic. 

Press Inc., New York, 1956). 
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wherezisaparametricvariable. T(ll(Z), T(2l(Z), ..• 
are unknown functions. They are determined in 
such a way that the singularities in the straight­
forward expansion, if there are any, are eliminated 
as much as possible. In this regard the two methods 
are similar, but the similarity ends here. To see 
this, we invert the series (AlO) and substitute it 
in (A9), 

f = (o>[t - ET(l)(t) ... ] 

+ 4(!)[t - ET(!)(t) .•. ] + 
Compare this with the multiple-time-scale method: 

JOURNAL OF MATHEMATICAL PHYSICS 

f = r>(to• tl , ••• ) + Ef(l)(to, t l , ••• ) + 
We see they are quite different in nature. Up to the 
nth order, there are 2n + 1 unknown functions of 
of single variables in the PLK method, whereas 
there are n + 1 unknown functions in n + 1 vari­
ables in the multiple-time-scale method. The extra 
freedom introduced in the PLK method up to nth 
order has a number of n, while in the multiple-time­
scale method, it is of n2

• It is not difficult to see that 
the procedure of (A9) and (AIO) is not applicable 
to our first example, as far as the asymptotic series 
is concerned. 
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A uniqueness theorem for solutions of the one-dimensional scalar analog to the Navier-Stokes equa­
tion is stated and rigorously established. 

1. INTRODUCTION 

I T is well known I that weak solutions of partial 
differential equations are not always unique. In 

certain cases this may be remedied by introducing 
higher-order dissipative or dispersive terms. An ex­
ample where this is the case leads to the one-dimen­
sional scalar analog to the Navier-8tokes equation. 
This one-dimensional analog was introduced by 
Burgers2

•
3 and has been studied from different points 

of view by Hopr and Kraichnan. 5 

can be linearized by a change of the dependent 
variable. The uniqueness proof given here does not 
depend on this fact. 

We consider a mixed initial and boundary-value 
problem for the nonlinear, inhomogeneous, one­
dimensional scalar analog to the Navier-Stokes 
equation; and following the method of Ladyzhen­
skaya,6 we prove that the weak solution is unique. 

It is known that the problem under consideration 

1 P. Lax, Nonlinear Problems (The University of Wisconsin 
Press, Madison, 1963), pp. 3-12. 

2 J. M. Burgers, Proc. Acad. Sci. Amsterdam 43,2 (1940). 
8 J. M. Burgers, Advan. Appl. Mech. 1, 171 (1948). 
4 E. Hopf, Commun. Pure Appl. Math. 3, 201 (1950). 
5 R. H. Kraichnan, J. Math. Phys. 2, 124 (1961). 
6 O. A. Ladyzhenskaya, The Mathematical Theory of 

Viscous Incompress£ble Flow (Gordon and Breach, Science 
Publishers, New York, 1963), Chap. 6. 

2. FORMULATION 

Let QT represent the closed rectangular region 

o ~ x ~ L, 

o ~ t ~ T. 

Consider the solution of 

(2.1) 

(2.2) 

U j + UU" = PU"" + f(x, t), (2.3) 

subject to the boundary condition 

U(O, t) = u(L, t) = 0, 

and the initial condition 

U(x, 0) = a(x), 

where 

a(O) = a(L) = O. 

(2.4) 

(2.5) 

(2.6) 
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3. DEFINITION OF WEAK SOLUTIONS interior to the domain Q; throughout which Uzz 

We define a weak solution of the problem (2.3)- exists. Then integrating the second and third terms 
(2.5) in the domain QT to be a function u(x, t) for of (3.2) by parts, using (4.2) and (4.3), yields 
which 

(4.4) 
(3.1) 

from which follows 
for all t E [0, T], where C T is a constant; and for 
which the derivatives uz, u, exist and are square- u, + UUz - VUzz = f, (4.5) 

summable over QT' The weak solution u(x, t) satisfies almost everywhere in QT' 
the boundary and initial conditions (2.4)-(2.5) and 
the identity 5. UNIQUENESS OF WEAK SOLUTIONS 

Theorem III. The problem (2.3)-(2.5) has no more 
than one weak solution. 

for all possible functions cp(x, t) such that 

cp(x, 0 E L2(QT), 

Proof: Let u and v be weak solutions of (2.3)-(2.5). 

cpz(x, t) E L 2(QT), 

Then 
(3.3) 

(3.4) iT i
L 

(utcp + VUzcpz - !u2cpz - fcp} dx dt = 0, (5.1) 

cp,(x, t) E L 2(QT), (3.5) and 

cp(O, t) = cp(L, t) = 0, (3.6) 

where L 2 (QT) denotes the Hilbert space of functions 
which are square summable over QT. 

The force function f in (3.2) is such that the 
integral involving it is well defined. Thus f can be 
an ordinary integrable function or a generalized 
function such as a Dirac delta function. 

4. RELATION BETWEEN CLASSICAL AND 
WEAK SOLUTIONS 

Theorem I. If the problem (2.3)-(2.5) has a 
classically differentiable solution in L 2 (QT) with 
derivatives in L 2 (QT), then this solution is a weak 
solution. 

Proof: We obtain the identity 

iT i
L 

(U t + uUz - IIUxx - flcp dx dt = 0 (4.1) 

from (2.3). Integration of the second and third terms 
in (4.1) by parts making use of 

1 (2) _ 1 (2) 1 2 "2CP U z - "2 cpU x - "2CPzU , 

(4.2) 

(4.3) 

and (3.6), yields (3.2) and the conclusion follows. 

iT iL 
(vtcp + IIVxCPx - !v2cpz - fcp} dx dt = O. 

Subtracting (5.2) from (5.1) gives 

iT iL 
(u, - vt)cp + IICPx(Uz - Vx) 

Let 

cP= 

then 

- !cpxCu2 
- v2

)} dx dt = O. 

{
(U - v) = w 

o 
o :::; t :::; tl 

tl :::; t :::; T; 

1', 1L 
o 0 (w,w + vw! 

- !wWx(W + 2v)} dx dt = O. 

An application of (2.4) reduces (5.5) to 

{' i L 

(ww, + IIW! - vwwx} dx dt = O. 

Define 

Theorem II. If the problem (2.3)-(2.5) has a weak 
solution and this weak solution has a square- and 
summable second derivative U xx in the subdomain 
Q; C QT, then u(x, t) satisfies the system (2.3)-(2.5) 
almost everywhere in QT' 

Ilwx(x, 011; = lL w!(x, t) dx, 

Proof: Let each function cP have compact support in terms of which (5.6) becomes 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
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! Ilw(x, tl ) II: 

+ 11 1" Ilwzll: dt - 1" iL 

WVWz dx dt = O. (5.9) 

Two successive applications of Schwarz's inequality 
to the first integral in the last term of (5.9) gives 

1L WVWZ dx ~ C~ IIwzl12 Ilw114' (5.10) 

where 

(5.11) 

It follows from a result obtained by Ladyzhenskaya7 

that 

(5.12) 

where E is any arbitrary E > 0; and C. is a positive 
number determined by E, with lim,->o C. = co • 

Notice that E is an arbitrary positive number, and 
since Cl > 0, it is permissible to choose E so that 

E = 1I/2Cl , (5.18) 

then (5.17) reduces to 

! Ilw(x, tl) II~ ~ C2 1" Ilwll: dt, (5.19) 

where C2 > O. Let 

y(tl) = 1" Ilwll: dt, 

then (5.19) becomes 

dy(tl)/dtl ~ 2C2y(tl ), 

which can be integrated to give 

(5.20) 

(5.21) 

(5.22) 

Combining (5.12) and (5.10) gives with 

(5.23) 

Both to and tl are arbitrary in [0, TJ. Choose to = 0, 
(5.13) then since yeO) = 0 from (5.20) it follows from 

and completing the square in (5.13) leads to the 
inequality 

1L WVWz dx ~ Ci{(2E Ilwzll: + ~E! Ilwll:)}' (5.14) 

Let 

and 
C2 = Cl (C!/4E); 

then (5.14) and (5.9) yield 

! Ilw(x, tl)ll: + 11 1" Ilwzll~ dt 

l it ( C
2

) ~ Cl 0 2E IIWzll: + 4E' Ilwll: dt. 

7 Reference 6, pp. 10-12. 

(5.15) 

(5.16) 

(5.17) 

(5.22) that for arbitrary tl in [0, TJ 

y(tl) ~ O. (5.24) 

Conversely, (5.20) implies 

y(tl) ~ 0; (5.25) 

hence 

(5.26) 

for arbitrary tl in [0, T], and therefore the solutions 
u and v must coincide. This proves the theorem. 

Note that the validity of the uniqueness proof 
depends on (5.12) which requires E to be strictly 
positive. As a consequence, uniqueness means that 
the parameter 11 playing the role of a kinematic 
viscosity and related to E by (5.18) must be strictly 
positive. 
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It is pointed out that, for a number of problems, exact quantization rules exist which closely re­
semble that of Bohr-Wilson--8ommerfeld. In some cases it is shown how these rules may be derived 
mathematically from the Schrodinger equation. 

1. INTRODUCTION 

THE eigenvalues (point spectrum) of the equation 

y,"(z) - (2mlh~[V(z) - EJy,(z) = 0 (1.1) 

are frequently estimated by the Bohr-Wilson-8om­
merfeld quantization rule 

l
",cE) 

Q(z) dz = (n + !)1I"i 
k,CE) 

(1.2) 

in those cases where 

(1.3) 

has two simple zeros (turning points) k1(E) < k2(E). 
Although (1.2) is generally supposed l to give good 
approximations for only the larger eigenvalues, it is 
very well known that in the case of the harmonic 
oscillator it happens to give all the eigenvalues 
exactly. That is, (1.2) is an exact quantization rule 
in this one case. 

Another curious and very well known fact about 
(1.2) concerns what we will call the radial wave 
equation. In this case the function V(z) appearing 
in (1.1) contains a parameter L, an integer, in the 
form L(L + 1). And the use of (1.2) gives approx­
imating expressions for the eigenvalues E which 
become exact ones upon replacing L(L + 1) by 
(L + !)2. In other words, an exact quantization 
rule for the radial wave equation is obtainable in 
the form 

i
f> 

_ Q = (n + !)1I"i, 
k, 

(1.4) 

where Q is the function obtained from Q in this 
case by replacing L(L + 1) by (L + !)2. Jel and Je2 

are the zeros of Q. 

'" This work was supported by the United States Atomic 
Energy Commission. 

1 P. M. Morse and H. Feshback, Methods of Theoretical 
PhY8ic8 (McGraw-Hill Book Company, Inc., New York, 
1953). For a mathematical proof, however, see E. C. Titch­
marsh, Quart. J. Math. 5, 228 (1954). 

Apparently it has not previously been noticed 
that exact quantization rules can be had in a number 
of other cases as well. In each of these cases one 
can find a suitable function Q for which (1.4) is 
an exact rule; or, alternatively, one can find a 
number a and a contour r such that the rule 

is exact. 

_~J Q =n+a 
2n ir 

(1.5) 

Actually one can go just a little further and give 
a single rule which is exact in all these cases. Namely, 

J ( Q' y,,) 
i Q + 2Q + J" = 0, (1.6) 

where the integral is along any simple contour 
enclosing all the singularities of Q in the finite part2 

of the complex plane. 
In Sec. 2 we have listed all the essentially differ­

ent cases we are aware of for which the differential 
equation (1.1) has at least two turning points 
and which can be solved explicitly in terms of 
known functions. It will be seen that (1.6) is exact 
in these cases. (We hasten to point out, however, 
that we do not expect the rule to be exact in all 
cases.) Rule (1.4) is dealt with in Sec. 3. 

In Sec. 4 we take up the obvious question of how 
one could derive (1.6) and (1.4) directly from (1.1) 
without any prior knowledge of the nature of its 
solutions. We are able to do this for at least the 
harmonic oscillator and the radial wave equation 
by simply determining the asymptotic behavior of 
the solutions of (1.1). Although the method is a 
fairly general one it is not obvious how all the other 
cases could be treated. 

Section 5 is a discussion of some of the obvious 
questions raised by this work. 

2 In two of the cases we have in mind QI is a periodic func­
tion, and in such cases the contour is to enclose only the singu­
larities in one period strip. 
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2. THE SPECIAL CASES3 Eigenvalues 

(i) The harmonic oscillator: 

Q2(Z) = (2m/h2)(l - E), 

1/;( - 00) = 0 = 1/;( 00 ) . 

Eigenvalues 

En = (2n + 1)[h/(2m)1]. 

(ii) The radial wave equation: 

Q2(Z) = a
2
D + L

2
(L + 1) _ 2a

2
D _ a2E, 

z z 

1/;(0) = 0 = 1/;(+ 00). 

Eigenvalues 

En = _a2D2/(n + a)2, 

a = ! + [a2D + (L + !)2]t. 

(iii) Morse oscillator: 

Q2(Z) = (2m/h2)(Ae-2aZ 
- 2Ae- az 

- E), 

1/;( - 00) = 0 = 1/;( 00 ). 

Eigenvalues 

En = -A(1 - (2~~)t (n + !)t 
(iv) Q\z) = ~~ [v~ - ~r -E ] ' 

1/;(0) = 0 = 1/;(00). 

Eigenvalues 

En = ~ (2!)! (4n + 1 + 2a) - 2av1) , 

where 

a = ! + (2ma2v/h2 + t)l. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

En = - W /2 ma2)(n + al, 

where 

a = ! + (2ma2 V/h2 + t)l. 

(2.12) 

We do not verify the quantization rules in detail 
for all these cases, but merely outline the steps 
needed to check (1.5) and (1.6) in Case (ii). The 
others are no more difficult. 

In Case (ii) the singularities of Q in the finite 
part of the complex plane are branch points (square 
roots) at the two turning points, which are on the 
positive real axis, and a simple pole at the origin 
with residue - [a2D + L(L + 1)]1. Our contour, 
then, is any simple closed curve containing these 
three points. 

The nth eigenfunction has n zeros between the 
two turning points and has the form za L~ anzn 

at the origin, where a = t + [a2D + (L + t)2]1. 
Hence 

1 J. 1/;' 1 J. Q' 
211"i j ""i" = n + a, while 211"i j 2Q = 0, 

and 

1 f 11k

• --. Q = 2·- IQI + Residue of Q 
2'/1"1, 211" k. t th .. a e orlgm 

{aD/( -E)! - [a2D + L(L + 1)]ll 

+ [a2D + L(L + 1)]1 

= aD/( -E)!. 

From these results and (2.4) it is evident that both 
(1.5) and (1.6) hold. 

3. THE FUNCTIONS Q(z) 

(v) Q2(Z) = (2m/h2)[V coe (7rZ/)a - E], 

1/;(0) = 0 = 1/;(a). 

Since, in may of the books on quantum mechanics, 
(2.9) attempts are made to "justify" (1.2) by means 

of arguments which use the functions 

Eigenvalues 

En = V + W/2m)(n + aY(1I"2/a2
), (2.10) 

where 

a = t + (2ma2V /h211"2 + t)l. 
(vi) Q2(Z) = -(2m/li2)[V sech2 (z/a) - E], (2.11) 

1/;( - 00) = 0 = 1/;( 00 ). 
a These equations and their solutions are all to be found in 

1. Gol'dman and V. Krivchenkov, Problems in Quantum 
Mechanics (Addison-Wesley Publishing Company, Reading, 
Massachusetts, 1960), as are the evaluations of the more 
awkward integrals needed for verifying the quantization 
rules. 

(3.1) 

as approximants in some sense for the eigenfunc­
tions 1/;(z) , and since in at least some cases (1.2) 
can be improved by replacing Q(z) with a suitable 
Q(z), it seems worthwhile to indicate very briefly 
why this should be expected. 

The functions w± are solutions of the differential 
equation 

w" - (Q2 + R)w = 0, (3.2) 

which will resemble our wave equation (1.1) wherever 
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R = (Q' /2Ql - (Q' /2Q)' (3.3) and hence 

is small compared to Q2. In the case of the harmonic 
oscillator, R is small at GO, the only singular point 
of the differential equation (1.1). However in Case 
(ii) , R is small (relative to Q2) at GO but not at 
the origin. [These are the two singular points of 
(1.1) in this case.] For at the origin, Rand Q2 are 
both O(l/l). 

If, on the other hand, we compare (1.1) with 

ilJ" - (el + R)ilJ = 0, (3.4) 

where 

and ilJ, II are defined by (3.1) and (3.3) with (1 
in place of Q, it will be seen that (12 + II is nearly 
equal to Q2 both at GO and at 0. Consequently 
there is good reason for expecting the solutions of 
(3.4) to approximate the solutions of (1.1). Note 
that this amounts, formally, to replacing L(L + 1) 
by (L + !)2. 

Exactly the same considerations apply to the 
other cases, leading to the following choices of (1. 

Case (iii): (12(Z) = Q2(Z). In other words, (1.2) is 
exact in this case. 

Case (iv): 

(12(Z) = (~:n Va
2 + DZ-2 + ~:n (~ l - 2V - E). 

Case (v): 

i"\2( ) (2m a
2 

) 2 7rZ 2m (V E) 
l\! Z = IF V + 47r2 CSC -;i - IF + ; 

the singular points of (1.1) are 0, a (mod a), and GO. 

Case (vi): 

(12(Z) = -e~2V + 4!2) sech
2 ~ - ~:n E; 

the singular points are ± at7!i (mod a7!i) and GO. 

Verification of (1.4) in these cases is straightforward 
and is omitted. 

4. DERIVATION OF (1.6) FROM (1.1) 

First we deal with the harmonic oscillator. 
Recall the discussion in Sec. 3 concerning the 

functions w,., and their differential equation (3.2), 
with now 

R(z) = (3z2 + 2E)/4(l - E)2. (4.2) 

Rewriting (1.1) in the form 

v/' - (Q2 + R)~ = -R~, (4.3) 

we can expect that the solution to the integral 
equation 

11b ~(z) = w(z) - 2 • [w_(z)w+(y) 

- w+(z)w_(y)]R(y)~(y) dy (4.4) 

will satisfy (4.3) if w is any solution of (3.2). Of 
course the integral here (and elsewhere) must be 
understood to be a contour integral and the contour 
must be suitably chosen. We will use (4.4), with 
suitable choices for wand b, to obtain information 
about the solutions of (1.1) which will allow us to 
deduce (1.6). 

First define a sequence ~" by 

(4.5) 

and 

11'" ~n(Z) = w_(z) - 2 • [w_(z)w+(y) 

- w+(z)w_(y)]R(Y)~n_l(Y) dy (4.6) 

for n > 1. (It will be seen that these definitions 
make sense.) Rewrite (4.6) as 

~ 11'" R -!!. (z) - 1 = -- - (y) 
w_ 2 • Q 

X [1 - exp ( -2 f Q) ] ~=1 (y) dy, (4.7) 

and note that 

= -~ I.'" ~ (y{ 1 - exp ( -2 r Q) ] 

X [~~ (y) - ~=1 (y) ] dy (4.8) 

for n ;::: 1. 
If, now, we can choose a contour C. running from 

z to + GO in such a way that 

(4.9) 

(4.1) we will have the inequality 
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1
1/1,,+1 (Z) - 1/1" (z)1 
W_ W_ 

~ L.I~ (y)II:: (y) - ~=1 (y)lldYI 

~ M(z) SUp 11/1" (y) _ 1/1"-1 (y)1 ' 
UEC. W_ w_ 

(4.10) 

where 

M(z) = Jc.l~ (y)lldyl 

= O(lzl-2
) for large Izl. 

In particular, if we can find any region D such that 
for each zED there is a contour C. lying in D 
for which (4.9) is valid and M(z) ~ 1, then it 
follows from (4.10) that 

(1/I,,+I/W-)(Z) - (1/I,,/w-)(z) ~ 0 

uniformly in D as n ~ 00, 

and that 
1/I,,/W- ~ 1/I/w- uniformly in D 

with 1/I/w- uniformly bounded there. Letting n ~ 00 

in (4.7) shows that 1/1 is a solution of (4.4), and 
using the upper bound of 1/I/w- on the right side 
of (4.4), we obtain 

L (z) = 1 + O(lzl-2
) uniformly in D. w_ (4.11) 

However we must show that D exists (nonempty). 
It is a simple matter to verify that 

exp ( -2 r Q) = exp {- [yQ(y) - zQ(z)]} 

I y + (y2 _ E)i)B'! (2m) I/AI 

X \Z + (l - E)I , 

and that Iz + (Z2 - E)tl = constant> Et is an 
ellipse in the complex z plane with foci at ± Ei. 
Consequently if R[z] 2=: 0 and Iz + (l - E)!I = 
A > Ei, we can define C. as that contour running 
from z along the ellipse Jz + (Z2 - E)!J = A to 
the positive real axis and thence to + 00. For y E C. 
it turns out that langle [yQ(y) - zQ(z)]I ~ h· with 
strict inequality at least whenever y is on the real 
axis with y ,= z. Hence D exists and contains all 
large z for which R[z] 2=: o. 

To sum up, we have shown that (1.1) has in D 
a solution 1/1 with asymptotic behavior given by 
(4.11). In particular, 1/t( + (0) = o. 

In an exactly similar fashion, by taking b = 00 e d 

and w = W_, we can show the existence of a solution 
f{! of (1.1) in a region D' which contains all large z 
with R[z] ~ 0 (or, rather, ~"I/' ~ angle z ~ !71'), 

and which has the asymptotic behavior 

(f{!/w_)(z) = 1 + O(lzl-2
) uniformly in D'. (4.12) 

By taking b = 00 etr , and W = w+ we find a solution 
(J of (1.1) in a region D" which contains all large z 
with 0 :::; angle z :::; 'I/' and has asymptotic behavior 

«(J/w+)(z) = 1 + O(lzl-2
) uniformly in D". (4.13) 

In particular, (J does not vanish at either + 00 or 00 e"'. 
An important consequence of this last remark is 

that every solution of (1.1) which vanishes at + 00 

is some constant multiple of the function 1/1 obtained 
above, and any solution which vanishes at ooe r

, 

is some multiple of the function f{!. 
Now, suppose that E is an eigenvalue of (1.1) 

with 1/1 the corresponding eigenfunction. In other 
words, suppose that 1/t vanishes not only at + 00 

but also at ooe r
'. Then 1/1 = Kf{! for some constant 

K. Hence, for any large z on the upper imaginary 
axis (such zED and D' both), we have both 

(1/I/w_)(z) = 1 + O(lzl-2
), 

and 

(1/I/Kw_)(z) = 1 + O(lzl-2
), 

which implies K = 1 and so (4.11) holds uniformly 
inD V D'. 

But we may assume any eigenfunction of (1.1) is 
either even or odd (an easy thing to check), so that 

1/I(u"') = ±1/I(x) (4.14) 

for any large real x. And at the same time, 

. 1 ( JZ'" ) w_(u"') = [Q(u"')]! exp - Q 

= [Q(:W exp (-t7l'~) exp (-r Q) exp (-J .... Q) 

(4.15) 

where r is any simple closed curve containing the 
two turning points ±Et. Using (4.14) and (4.15) 
in (4.11) with z = xe'" gives 

-~ f Q = n +.! 
271'~ r 2 

for some nonnegative integer n. 
For the radial wave equation the argument is 

essentially the same as in the previous case, although 
naturally some of the details differ. By considering 
the integral equation (4.4) with b = + 00 and w = w_, 
we show the existence of a solution 1/t of (1.1) with 
asymptotic behavior 
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(4.17) 

which includes all large z with 0 ~ angle z ~ '11". 
Taking b = CD e2r

, and w = w_ we find a solution cp 
of (1.1) with asymptotic behavior 

(cp/w_)(z) = 1 + O(lzl-2
) in a region D' (4.18) 

which includes all large z with 'II" ~ angle z ~ 2'11". 
And by considering b = CDe

r
, and w = w+, we 

conclude that any solution of (1.1) which vanishes 
at + CD (or CDl"') is some multiple of 1/1 (or cp). 

But of course any solution of (1.1) which vanishes 
at the origin is of the form za L~ anz", a = ! + 
[a2D + (L + !?]!. Consequently, if E is an eigen­
value, so that 1/1(0) = 0, then 

1/I(xe2r
') = e2a "'1/I(x) (4.19) 

for large real x, and also 

1/I(z) = Kcp(z) (4.20) 

for some constant K. As before we deduce K = 1, 
since D and D' overlap, and so (4.17) holds in 
D V D'. Hence, using (4.19) and 

w_(xe2r
') = exp (Jr Q )w_(x) (4.21) 

where r is any simple closed curve containing the 
origin and the two turning points, we deduce the 
quantization rule 

- 2~ i Q = a + n for some integer n. (4.22) 

(It turns out that n cannot be negative because 
of the sign of Q.) 

Obviously the same procedure can be used to 
derive (104) for these two cases. In fact we could 
obtain (1.6) for fairly general Q, provided only that 
it bear a sufficiently close resemblance to either 
(i) or (ii). We omit the details. 

5. DISCUSSION 

Since in the case of the anharmonic oscillator 
Q2(Z) = (2m/li,2)(z4 - E) our rule (1.6) is completely 
equivalent to the Bohr-Wilson-8ommerfeld rule 
(1.2), which is only approximately correct4 in this 
case, we cannot expect it to be exact in all cases. 
The most one could hope for is that (1.6) be always 
at least as good as (1.2). 

There is one example we know6 of for which 
solutions can be obtained only numerically and for 
which our rule (1.6) differs from (1.2) i namely the 
case 

Q2(Z) = (2000e-a.4 (.-1.3) 

- 4000e-1.7(.-1.3) + 2/i - E). 

The ground state Eo has been computed4 to be 
-1923.5296551. We evaluated the left side of (1.2) 
using this number of E and obtained 1.57079634. 
This is remarkably close to (1.2) and distressingly 
far from (1.6), which is equivalent in this case to 
(1.2) with (2 - 21) 'II" in place of !'II". Perhaps it 
would be worthwhile to recompute Eo. 

In any event, it would be of interest to know 
for which problems rules like (1.2) or (1.6) hold. 
Obviously the treatment in Sec. 4 could be applied 
to fairly general functions Q2 which closely resemble 
either the harmonic oscillator or the radial wave 
equation, always obtaining exact rules. 

Note added in proof: We have now verified that 
the stated value of Eo is correct, which implies 
that (1.2) is better in this case than (104) or (1.6). 
That (1.2) gives such a good approximation is 
probably due to the large coefficients of the ex­
ponentials. 

4 D. Secrest, K. Cashion, and J. o. Hirschfelder, J. Chern. 
Phys. 37, 830 (1962). 

6 The author is indebted to Dr. C. J. MacCallum for 
bringing a number of papers to his attention. 
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Coupled Magnetomechanical Equations for Magnetically Saturated Insulators 
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The differential equations and boundary conditions governing the macroscopic behavior of non­
conducting magnetically saturated media undergoing large deformations, are derived by means of 
a systematic and consistent application of the laws of continuum physics to a model consisting of an 
electronic spin continuum coupled to a lattice continuum. The macroscopic effect of the quantum 
mechanical exchange interaction is included as are dissipation and the associated thermodynamics. 
The resulting nonlinear equations are specialized to the important case of a small dynamic field 
superposed on a large static biasing field. Only the linear approximation in the small-field variables 
is obtained. This final system of linear equations permits the solution of a variety of magnetomechani­
cal boundary-value problems. 

1. INTRODUCTION 

ON the one hand there exists the macroscopic 
theory of elasticity,I.2 and on the other what 

may be called the macroscopic theory of the mag­
netodynamics of saturated magnetic media.3

-
5 The 

former governs, among other things, the propagation 
of waves in and the vibrations of an elastic solid 
and the latter such phenomena as the frequency 
dependence of the magnetic susceptibility, ferro­
magnetic resonance, and the propagation of spin 
waves. In recent years much interest has centered 
on the magnetostrictive coupling of these two sys­
tems6

-
S

; but all of these papers use results from 
classical elasticity theory although it is clear that 
certain assumptions which are made in classical 
elasticity theory are not satisfied in such a coupled 
system. None of the papers go back to the funda­
mental laws from which classical elasticity theory 
is derived to see what basic changes result. In addi­
tion, all of these papers assume infinitesimal strain 
at the outset and none of them formulate boundary­
value problems. 

1 A. E. H. Love, A Treatise on the Mathematical Theory of 
Elasticity (Cambridge University Press, Cambridge, England, 
1927) 4th ed. (also Dover Publications, Inc., New York, 
1944). 

2 C. Truesdell and R. A. Toupin, "The Classical Field 
Theories" in Encyclopedia of Physics, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1960), Vol. III. 

a J. Smit and H. P. J. Wijn, Ferrites (John Wiley & Sons, 
Inc., New York, 1959). 

4 R. F. Soohoo, Theory and Application of Ferrites (Pren­
tice-Hall, Inc., Englewood Cliffs, New Jersey, 1960). 

• A. G. Gurevich, Ferrites at Microwave Frequencies, (trans­
lated from the Russian by A. Tybulewicz) (ConSUltants 
Bureau, New York, 1963). 

6 C. Kittel, Phys. Rev. 110, 836 (1958). 
7 A.!, Akhiezer, V. G. Bar'iakhtar. and S. V. Peletminskii, 

Zh. Eksperim. i Teor. Fiz. 35, 228 (1958) [English transl.: 
Soviet Physics-JETP 8, 157 (1959)). 

8 K. B. Vlasov, Phys. Metals Metal Res. 5, 385 (1957); 
Izv. Akad. Nauk. SSSR, Ser. Fiz., 22, 1159 (1958) (Columbia 
Tech. Trans!. 1149-1157). 

Now, it is well known that any theory of the 
mechanical behavior of deformable continuous media 
(e.g., elasticity) may be obtained by applying the 
laws of the conservation of mass, linear momentum, 
angular momentum and energy to an arbitrary 
element of matter and making suitable constitutive 
assumptions (e.g., Hooke's law). It is also known 
that the macroscopic theory of the magneto dynamics 
of saturated magnetic media may be obtained by 
applying the law of conservation of angular momen­
tum to an arbitrary region containing electron spins 
and using the appropriate electromagnetic equa­
tions. The application of the law of conservation 
of angular momentum separately to the two systems 
should make clear the need to state the fundamental 
laws and apply them to the coupled system in a 
consistent manner. 

All of the aforementioned considerations are of 
a macroscopic nature and all discrete microscopic 
detail has been expressly avoided. Such an approach 
is readily justifiable since a detailed, consistent 
microscopic theory leading to the macroscopic equa­
tions is not presently available nor does it appear 
that one will be in the near future. Furthermore, 
it is well known that a knowledge of the detailed 
behavior of the particles is, in such instances, not 
necessary for the determination of the macroscopic 
field variables. However, useful conceptual macro­
scopic information may be obtained from a knowl­
edge of microscopic phenomena (e.g., the electronic 
angular momentum character of the magnetic 
moment), and this macroscopic information may be 
incorporated in a continuum theory in a manner 
consistent with the basic laws of continuum physics. 
This is the point of view adopted in this paper. 

In this paper the field equations for the coupled 
system are derived by means of a systematic 
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application of the laws of continuum physics. The 
medium being considered is carefully described and 
the macroscopic field vectors involved in the analysis 
are carefully defined. No assumption of infinitesimal 
strain is imposed at the outset. Consequently, the 
resulting nonlinear equations are valid for finite 
deformation and large values of the dynamic mag­
netization. The equations are also specialized to the 
important case of a small dynamic field superposed 
on a large static biasing field. Only the linear 
approximation in the small-field variables is con­
sidered. The jump (boundary) conditions at a mov­
ing surface of discontinuity are obtained. It is 
assumed, however, that the frequency-wavelength 
combinations with which we are concerned are far 
outside the range associated with electromagnetic 
propagation, so that the electromagnetic equations 
may be replaced by the quasimagnetostatic equa­
tions. Moreover, as already implied, the material 
is assumed to be magnetically saturated, so that the 
direction of the magnetic moment changes but the 
magnitude does not. 

2. DESCRIPTION OF THE CONTINUUM 

It is well known from microscopic particle physics 
that a magnetic moment IDl possesses angular mo­
mentum J = IDl/Y, where the coefficient I' depends 
on the particular material. It is also well known 
that a magnetic field H acting on a magnetic moment 
IDl produces a couple equal to IDl x H. Furthermore, 
the application of the conservation of angular mo­
mentum to the system gives the magnetodynamic 
equation dIDljdt = I'IDl xH. In addition it is known 
from quantum theory that there is an interaction 
energy in the microscopic Hamiltonian9 which has 
no classical analogue and which is referred to as 
exchange energy. It has further been established, 
by Herring and Kittel,IO assuming only nearest­
neighbor interactions between adjacent spins, that 
the macroscopic effect of this exchange interaction 
may be represented by an effective magnetic field 
He which produces a couple IDl x He acting on the 
magnetic moment IDl. 

In any continuum theory of the mechanical be­
havior of deformable media (e.g., elasticity theory), 
two distinct types of forces act, body forces f and 
contact forces t. 2 The body forces arise as a result 
of some distant action from within or outside the 
body. They are long-range forces. The contact forces 
arise as a result of the contact of adjacent elements of 
a body. Macroscopically speaking, they are surface 

D J. H. Van Vleck, Rev. Mod. Phys. 17, 27 (1945). 
10 C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951). 

forces. Microscopically, they are caused by very 
short-range near-neighbor interactions between ad­
jacent microscopic elements. As is well known, these 
contact forces result in the mechanical stress tensor. 
Note the microscopic similarity between this surface 
force t and the effective magnetic field He obtained 
by Herring and Kittel. In many materials there 
can act body couples, 2 , 11,12 and contact couples 
toO.2.13-15 The contact couples will be expressly 
excluded from this treatment since they are deemed 
to be small. 16 The body couples, however, are known 
to be important in the media with which this paper 
is concerned. Indeed, as has already been mentioned, 
such couples (IDl x H) are precisely the quantities 
which appear in the aforementioned magnetody­
namic equation. Such body couples are taken to 
be zero in classical elasticity theory. I This assump­
tion, upon application of the conservation of angular 
momentum, results in the symmetry of the stress 
tensor in that theory. Thus, it should be clear that 
in magneto elastic media the stress tensor will not 
be symmetric; and consequently, the use of results 
from classical elasticity theory and magnetodynamic 
theory in coupling the two fields could readily lead 
to inconsistencies. That is to say, it seems to this 
author that a theory governing such a combined 
magneto mechanical system should be obtained by 
means of a consistent application of fundamental 
principles to a well-defined macroscopic model. The 
description of such a model follows. 

In view of the previous statements, it seems 
natural to define two distinct interacting continua. 
One of these continua will be called the electronic 
spin continuum and the other the lattice continuum. 
The electronic spin continuum possesses at each 
point a macroscopic magnetic moment per unit 
volume M and angular momentum M/y (I' a neg­
ative number), and it cannot move (translate) with 
respect to the lattice continuum at that point. It 
interacts with the loca1'7lattice continuum by means 
of an effective local magnetic field HL which exerts 
a couple per unit volume on the magnetization vector 
M by means of the recipe M XHL. Note that by 

11 R. A. Toupin, J. Ratl. Mech. Anal. 5, 849 (1956). 
12 L. D. Landau and E. M. Lifshitz, Electrodynamics of 

Continuous Media (Pergamon Press, Inc., New York, 1960), 
p.144. 

13 E. Cosserat and F. Cosserat, Theorie des Corps De­
formable (Hermann & Cie., Paris, 1909). 

14 E. L. Aero and E. V. Kuvshinskii, Fizika Tverd. Tela 2, 
1399 (1960) [English transl. Soviet Physics-Solid State 2, 
1272 (1961)]. 

15 E. S. Rajagopal, Ann. Physik 6, 192 (1960). 
16 R. D. Mindlin and H. F. Tiersten, Arch. Ratl. Mech. 

Anal. 11, 415 (1962). 
17 The word local is used throughout to mean something 

occupying the same region of space. 
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CONTINUUM CONTINUUM CONTINUUM 

FIG. 1. Schematic diagram showing the linear and angular 
mo~entum and force and couple vectors acting in the 
continua. 

virtue of the definition of H\ without loss of 
generality we may take M·HL = O. Since M XHL 
is a couple exerted by the local lattice continuum 
on the spin continuum, and angular momentum is 
conserved, an equal and opposite couple HL xM 
must be exerted by the spin continuum on the local 
lattice continuum. In addition to the couple caused 
by the lattice, the electronic spin continuum ex­
periences couples caused by the ordinary Maxwellian 
magnetic field HM and couples caused by an effective 
exchange field F, which will be assumed to act 
on an element of surface area since it is due to a 
near-neighbor microscopic interaction. This will be 
discussed thoroughly in a later section. The lattice 
continuum is an ordinary mechanical continuum 
which experiences the aforementioned body couple 
HL x M from its interaction with the spin continuum 
as well as the body forces experienced by the spin 
continuum, which forces are transferred directly from 
the spin continuum to the lattice continuum because 
of the assumption of no relative motion of the two 
continua. By virtue of the same assumption any 
interaction force between the two continua caused 
by HL is counterbalanced. The lattice continuum 
reacts to the forces and couples by means of stresses 
and deformations in the usual manner. A schematic 
diagram of the model showing forces and couples is 
shown in Fig. 1. 

3. THE LATTICE CONTINUUM 

Figure 2 shows a surface 8' which separates a 
portion of the volume V' of the lattice continuum 

from the remainder. At each point of 8', let n be 
the unit vector normal to 8' pointing out of the 
volume V'. The material on the side of 8' toward 
which n is directed exerts contact forces, on the 
material on the other side, which are assumed to 
consist, at each point of 8', of a force per unit 
area t(n).18 Also, at each point in V', let f be the 
field of extrinsic and mutual forces per unit volume 
and c the field of extrinsic and mutual couples per 
unit volume. The word extrinsic refers to force fields 
generated outside the body, and mutual to force 
fields generated within the body far from the point 
where they act. The traction vector ten) and the 
body force vector f are polar vectors, whereas the 
body couple vector c is an axial vector. As usual 
axial vectors are taken as positive in the direction 
of advance of a right-handed screw. 

Let us consider the motion of a portion V of a 
material volume, bounded by a surface B with unit 
outward normal n. Across B there act traction vectors 
ten), and within V there act body force and body 
couple vectors f and c. The equations of the con­
servation of mass, linear momentum and angular 
momentum are taken to be, respectively, 

:t iv p dV = 0, (3.1) 

:t 1 pv dV = 1 ten) dB + 1 f dV, (3.2) 
v s v 

~t Iv y xpv dV 

= Is y xt(n) dB + Iv (y xf + c) dV, (3.3) 

where d/dt denotes the material time derivative 
p is the mass density, y is the spatial positio~ 
vector shown in Fig. 3, and v is the material velocity 
vector dy / dt. 

'-L.._-~ t(nl 

FIG. 2. An arbitrary portion 
V', of the lattice continuum 
separated from the remainder 
by a surface 8'. 0 

FIG. 3. An arbitrary region of the lattice continuum in motion. 

18 Couples per unit area are assumed to be zero. 
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Application of Eq. (3.2) to an elementary tetrahe­
dron and taking the limit as the volume of the 
tetrahedron shrinks to zero yields the definition of 
the usual stress tensor (dyadic19

) -;: 

(3.4) 

{

I i = j 
e,Oej = 5,j = 0 i r!' j , 

where e, denotes a unit vector in the ith direction, 
and the summation convention for repeated indices 
is employed. Both dyadic and Cartesian tensor 
notation will be used in this paper. The one to 
be used in a specific instance will be determined 
by convenience and common practice. For instance, 
the vectors y and v, which have already been intro­
duced, and the vector operator '1. may be written 
in Cartesian coordinates, respectively, as 

y = e,Y" v = e,(djdt)y" '1. = e,(ajay,). 

Thus, y, represents the rectangular Cartesian coor­
dinates of a material particle at a time t, i.e., the 
Eulerian coordinates. 

Now, with (3.4), (3.1), and the divergence the­
orem, (3.2) becomes 

Iv ('1. 0
-; + f - p :t v) dV = 0, 

from which, since V is arbitrary, we obtain 

'1.0-; + f = p(djdt)v, (3.5a) 

or in component form 

(ajaYi)T,j + fj = p(djdt)vj, (3.5b) 

which are the usual stress equations of motion. 
After substitution of (3.4), Eq. (3.3) takes the 

component form 

~t Iv ei/kYjpVk dV = is e,jkYjnlTU dB 

in which we have introduced the skew-symmetric 
axial tensor eijk, which is defined by 

+1 if ijk cyclic (123,231, 312), 
eijk = 0 if any two indices are equal, 

-1 if ijk anticyclic (132, 213, 321), 

and which is related to the unit base vectors e. by 

19 For those interested in more detail see Ref. 2, Sec. 203 
or Ref. 1, Sec. 47. 

Applying the divergence theorem to (3.6) and using 
(3.1) as well as the fact that aYij ay, = 5i1 , we obtain 

r (iha d ) }yeijkYj aYI + fk - p dt Vk dV 

+ Iv (eijkTj. + Ci) dV = 0, 

from which, with (3.5b), we obtain 

(3.7) 

which yields the symmetry of the stress tensor in 
classical elasticity theory, since c = 0 in that 
theory. For the medium described in Sec. 2 we know 
that the couple c exerted on the lattice continuum 
by the spin continuum is HL x M. Consequently, 
we have 

the substitution of which in (3.7) yields 

eijk(Tjk + H~Mk) = o. (3.8) 

Equation (3.8) is an axial vector equation, from 
which the corresponding second-rank antisymmetric 
polar tensor equation can readily be determined in 
the usual manner, i.e., by operating on (3.8) with 
e;z", and using the well-known tensor identity 

to obtain 

(3.9) 

Since 2Tt;" = TI .. - T ... z, Eq. (3.9) may be written 

T~ .. = !(MIH~ - H~Hm), 

or in vector (dyadic) notation, 

-;A = !(MHL _ HLM), 

(3. lOa) 

(3. lOb) 

which gives the antisymmetric portion of the me­
chanical stress tensor in terms of the magnetization 
and the local magnetic field. Since -; = -;B + -;\ 
we may substitute from (3.lOb) into (3.5a) to obtain 

'1. 0 -;8 + !'1.o(MHL - HLM) + f 
= p(djdt)v, (3.11) 

which is a useful form of the stress equations of 
motion for the medium being considered. 

It should be remembered that Eq. (3.11) is written 
in Eulerian (spatial) coordinates Yi, and that in 
those coordinates 

(djdt)v = (ajat)v + vov.v. 

Equation (3.11) can also be transformed to La-
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grangian (material) coordinates, which will turn 
out to be more useful in this paper. In addition, 
material as well as spatial coordinates will have to 
be employed in formulating constitutive equations. 
Thus, we introduce the material position vector x, 
which refers to the position of a material particle 
at some reference time and may be written in the 
Cartesian form 

x = eiXi, 

where it is understood thaeo 

Xi = Xi(y;, t) and y; = Y;(Xi, t). (3.12) 

The transformations shown in (3.12) are usually 
referred to as the mapping functions of the deforma­
tion or simply the deformation. They are assumed 
to be one-to-one and twice continuously differ­
entiable. We also introduce the material gradient 
Vz == a/ax, which, in Cartesian coordinates, takes 
the form 

V: = ei a/ax;. 

Since the mappings (3.12) are assumed to be one­
to-one, the Jacobians of the transformations (3.12) 
are always different from zero, and by continuity 
always have the same sign. Thus, we may write 

J = det IlayJax;1I > 0. (3.13) 

We also have the well-known geometric equation 

dV = J dVo, (3.14) 

which relates an element of volume dV in the 
deformed state to the corresponding element dVo 
in the reference state. From (3.1) and (3.14), we 
obtain 

pJ = Po, (3.15) 

wherein Po is the mass density in the reference 
configuration. Equation (3.15) is one form of the 
continuity equation. 

From the transformations (3.12) and the chain 
rule of differentiation we have 

~ = aXm~ 
aYi ay; aXm ' 

(3.16a) 

which may be written vectorially as 

Vu = Vux·V:. (3.16b) 

Using (3.16b), and regarding all variables in (3.11) 
as functions of the Lagrangian coordinates Xi and 
the time t, we may write (3.11) in the form 

20 For a. clear discussion of deformation theory see Ref. 2, 
Sees. 13, 15, and 16. 

= p(av/at), (3.17) 

which is the stress equation of motion in Lagrangian 
coordinates. 

4. THE ELECTRONIC SPIN CONTINUUM 

Now it has been assumed that the electronic 
spin continuum possesses no linear momentum 
and that no point can translate with respect to the 
corresponding point of the lattice continuum. Thus 
it is clear that the spin continuum expands and 
contracts with the lattice continuum and must 
occupy exactly the same volume as the lattice 
continuum, so that volumetric behavior is governed 
by Eqs. (3.1), (3.14), and (3.15). Similarly, the 
conservation of linear momentum simply says that 
whatever force21 (of magnetic origin) is applied to 
a point of the spin continuum, is transferred directly 
to the lattice continuum at that point. That force 
has been labeled f in Sec. 3, and its expression in 
terms of magnetic quantities is given later on in 
this section. 

Inasmuch as the macroscopic effects of exchange 
can be adequately treated by considering only 
nearest-neighbor interactions between adjacent 
spins,IO it seems reasonable to represent exchange 
macroscopically by means of a surface interaction 
in much the same manner as the stress vector which 
was discussed in the preceding section. More specifi­
cally, we introduce an effective surface exchange 
field F which acts across a surface S and produces 
a couple per unit of surface area equal to M x F. 
The exchange field vector F is an axial vector 
which originates in that portion of the spin con­
tinuum which is just on the other side of the surface 
being considered. Note that F has the dimensions 
of magnetic field times length, and that its value 
at a given point will depend on the direction of the 
normal to the surface at that point. Since only that 
portion of F(n) which is perpendicular to M, for 
any surface through the point, has effectively been 
defined, we may introduce the condition 

[F(n)]·M = 0, (4.1) 

for any surface, without loss of generality. We now 
consider the angular momentum of a volume V, 
of the electronic spin continuum, bounded by a 
surface S with unit outward normal n. Across S 
there act the effective magnetic exchange vectors 
F(n) discussed above, and within V there act the 

21 Only magnetic forces are being considered in this paper. 
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ordinary Maxwellian magnetic field HM and the 
aforementioned local magnetic field HL. Naturally 
F and HL are axial vectors, as are M and HM. 
The equation of the conservation of angular mo­
mentum takes the form 

is M xF(n) dS + Iv M x(HM + HL) dV 

=!l1 M dV 
dt v 'Y ' 

(4.2) 

where again, djdt denotes the material derivative. 
The dependence of the exchange field vector F(n) 

on the normal n may be obtained from (4.2) in 
the following manner. Application of Eq. (4.2) to 
the tetrahedron shown in Fig. 4 and taking the 
limit as the volume of the tetrahedron shrinks to 
zero yields 

M x [F(n).6S + ~ F( - ei).6S, ] = 0, (4.3) 

since h ~ 0, while M, H M
, H L

, and (d/dt)(Mh) 
remain bounded. Since we have introduced the con­
dition (4.1) and M is assumed nonzero, Eq. (4.3) 
is satisfied if, and only if 

3 

F(n).6S + L: F( -ei).6Si = O. 

From Fig. 4 it is clear that 

.6S, = .6S_; = n,.6S, 

which, with (4.4), gives 
3 

(4.4) 

F (-8,) 

FIG. 4. Elementary tetrahedron of volume lh~. 

The quantity e,F(ei) is a dyadic and hereafter 
will be denoted by the symbol - A. With this 
convention, Eq. (4.7) takes the vector form 

F(n) = -n·A, 

or the Cartesian component form 

F;(n) = -niA;;, 

(4.8a) 

(4.8b) 

in which the first index on the magnetic exchange 
tensor A refers to the surface on which the magnetic 
exchange field acts and the second to the components 
of the field vector acting on that surface. Since 
(4.1) holds for arbitrary n, we have, from (4.8) and 

F(n) = - L: niF( -ei)' (4.5) (4.1), the important condition 
i=l 

Consider the surface n = (1,0, 0,); then from (4.5) 
we have 

F(e l ) = -F(-e l ). 

A parallel application of (4.5) to the remaining two 
perpendicular surfaces shows that 

F(e;) = -F(-e;), (4.6) 

which gives us the important result that the effective 
magnetic exchange vectors acting upon opposite 
sides of the same surface are equal in magnitude 
and opposite in direction. From (4.6) and (4.5), 
upon eliminating the L and reintroducing the sum­
mation convention, we have 

F(n) = niF(e,), 

which may be written 

F(n) = n;e;'e,F(ei) = n·e,F(ei)' (4.7) 

A,M = 0, (4.9) 

which reduces from 9 to 6 the number of possible 
components of A. 

Before proceeding we must discuss the saturation 
condition in some detail. When a material is mag­
netically saturated, the magnitude of the total 
magnetic moment is conserved. However, when the 
volume is varying, the magnitude of the magnetic 
moment per unit volume M is not conserved; never­
theless, since the mass is conserved, the magnitude 
of the magnetic moment per unit mass is conserved. 
In view of this it is convenient to work with the 
magnetic moment per unit mass y, which is given by 

y = M/p. (4.10) 

Then the saturation condition can be written in 
the convenient form 

2 
Y'Y = /Ls, (4.11) 
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where JJ. s is constant in a homogeneous material. 
Taking the material time derivative of (4.11) and 
of the material gradient of (4.11), respectively, we 
obtain the important conditions 

v· (djdt)v = 0, 

(Vzv)·(djdt)v + v·(djdt)(vVz) = 0, 

which must be satisfied by V. 

(4.12) 

(4.13) 

After substitution from (4.8) and (4.10) and appli­
cation of the divergence theorem, Eq. (4.2) takes 
the component form 

1 ., .(-oA zk - Au ~ + HM + HL) dV e.,kPJJ., oy 0 k k 
Y ,p y, 

f oJJ.; 1 d 1 
- y ewpAu By, dV = ; dt y PJJ.. dV, 

from which, with (3.1), we obtain 

.. .(HM _ BAlk _ Au ~ + HL) 
e"kPJJ.,,, oYz P oy, k 

(4.14) 

We must now introduce a further restriction on A, 
i.e., in addition to (4.9), so that (4.12) be satisfied 
identically. We must require AlkoJJ.;/OYI to be sym­
metric, i.e.,22 

(4.15) 

which assures us that the last term on the lhs of 
(4.14) vanishes. Thus, (4.14) becomes 

(HM _ oA'k _ AZk ~ + HL) 
eifkPJJ.; k 0Yz P oy, k 

1 d 
= ; P dt JJ.., (4.16a) 

which may be written in the vector form 

VX(HM - Vu·A -; Vup.A + HL) 

1 d 
= ; dt v, (4. 16b) 

which is obviously consistent with (4.12). 
We will now determine the expression for the 

magnetic body force f. Since any force generated 
by HL is local and it has been assumed that there 
is no relative motion of the two continua, such a 
force is automatically equilibrated by an interaction 
between the continua which need not be specified 

22 It can be shown that this condition is equivalent to the 
invariance of the exchange energy in a rigid rotation of the 
entire spin continuum with respect to the lattice continuum. 

JoL(1l 

FIG. 5. Incremental motion of 
magnetization vector in time inter­
val At. 

here. On the other hand it is well known, from 
magnetostatics, that a spatially varying magnetic 
field HM exerts a force on a magnetic dipole; but 
there appears to be some disagreement in. the existing 
literature23

-
25 as to the precise form for f. However, 

for definiteness we will use the form 

(4.17) 

for the body force. Other forms could have been 
chosen equally readily, with only minor changes 
resulting. As has already been discussed, this f is 
applied directly to the lattice continuum. 

In order for us to write the equation of conserva­
tion of energy either for the spin continuum or for 
the total continuum, we must know the rate at 
which each couple acting on the spin continuum 
does work. To this end we consider a typical couple 
M xHP

• The rate at which work is done by this 
couple in time !:It is 

(4.18) 

where the angle w!:lt through which V turns in time 
!:lt is shown in Fig. 5. From Fig. 5 it is clear that 

~~~ 
w!:lt = Ivl Ivl x l!:lvl ' 

from which we have 

w = (ljJJ.~)v x (djdt)V' 

From (4.18) and (4.19) we obtain 

dW
P 

P (1 d) -- = (pvxH ). 2VX-V & JJ.s & ' 

(4.19) 

(4.20) 

for the rate at which work is done by a couple 
M x H P acting on M. Using some well-known vector 
identities, we see that Eq. (4.20) may be written 

23 M. Mason and W. Weaver, The Electromagnetic Field 
(The University of Chicago Press, Chicago, 1929) (also Dover 
Publications, Inc., New York), p. 218. 

24 C. M~ller, The Theory oj Relq,tivity (Clarendon Press, 
Oxford, England, 1952), Sec. 75. 

2li W. F. Brown, Jr., Magnetostatic Principles in Ferro­
magnetism (North-Holland Publishing Company, Amsterdam, 
1962), Chap. 4, Sec. 2. 
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in the form 

dW
P 

1 ( .. u p d P d ) ---a:t = #.I~ P ,.~.L ·dt,-,·H "dt ll , 

from which, with (4.11) and (4.12), we obtain 

dWP /dt = H P
• p(d/dt)lI. (4.21) 

Thus it is clear that dotting the rhs of (4.19) into 
(4.16b) gives us the important energy relation 

HM.i£, - V .A.i£ 1I 
dt M dt 

1 A d HL d - P V uP' • dt ' + . dt' = 0, (4.22a) 

which may be written in the tensor form 

HM d aA Ilr d 
k dt #.I. - aYI dt #.Ik 

1 ap d L d 
- P aYI Alk dt #.Ii + Hk dt #.Ii = O. (4.22b) 

In general the magnetic field must also satisfy 
Maxwell's equations 

V XHM = .! aD + 47r. 
• c at c J, 

1 aB 
Vu xE = -cat' 
B = HM + 47rM, 

(4.23) 

(4.24) 

(4.25) 

where the vectors D, j, and E represent the electric 
displacement, conduction current and electric field, 
respectively, and c denotes the speed of light. Since 
we are concerned with nonconducting magnetic 
media at frequency wavelength combinations far 
outside the range associated with electromagnetic 
propagation, the conduction current j and the time 
rate of change of electric displacement aD/at may 
be neglected, and Eqs. (4.23) and (4.24) reduce to 
the equations of the quasistationary magnetic field, 

HM = -V.CP, 

V.·B = 0, 
(4.26) 

(4.27) 

where cp is the axial magnetic scalar potential. For 
our purposes we shall also need the integral relations 
from which (4.26) and (4.27) may be deduced when 
suitable continuity conditions are assumed. These 
integral relations are, respectively, 

f HM ·dy = 0, (4.28) 
c 

in.BdS = 0, (4.29) 

where C denotes an arbitrary circuit and S an 
arbitrary closed surface, both of which are stationary 
with respect to an inertial reference frame. 

5. THERMODYNAMIC CONSIDERATIONS 

The principle of conservation of energy for the 
material medium-consisting of both the lattice and 
electronic spin continua-states that in any volume 
V of a body bounded by a surface S with unit 
outward normal n, the rate of increase of energy 
(kinetic plus internal) is equal to the rate at which 
work is done by the surface tractions and magnetic 
exchange torques acting across S, less the flux of 
thermal energy outward across S, plus the rate at 
which energy is supplied to the material from the 
quasistatic magnetic field. Thus, 

~t Iv (!pv'V + pU) dV 

= Is (t.v + F· p :t 1I - n. q) dS + Iv E dV, (5.1) 

where d/dt is the material time derivative, !v·v is 
the kinetic energy per unit mass, U is the internal 
energy per unit mass, t·v is the rate at which work 
is done by the surface tractions, F· p d,/ dt is the 
rate at which work is done by the surface exchange 
torques, q is the heat flux vector and E is the rate 
of supply of energy per unit volume.26 The time 
rate of change of spin kinetic energy vanishes by 
virtue of (4.11). In view of Eqs. (4.17) and (4.21), 
the rate at which energy is supplied to the material 
takes the form 

E = HM'p(d/dt), + (M·V~M).V. (5.2) 

The first term in (5.2) represents the rate at which 
the magnetic couples do work and the second term 
represents the rate at which the magnetic body force 
does work. 

In view of (5.2) and Poyntings theorem, Eq. (5.1) 
can be written in another form which is particularly 
enlightening. Poyntings theorem for this quasistatic 
magnetic field takes the degenerate form 

-l.ln.(cp aB) dS -1 HM
•
aM 

dV 
8411" at v at 

= f i. (.l HM .HM
) dV, (5.3) 

vat 811" 

where (411")-lcpaB/at is the form taken by the 
Poynting vector E x H in a quasistatic magnetic 

lI6 For a general discussion of the procedure employed here 
in coupling the magnetic field to the material medium see 
Ref. 2, Sees. 284-286. 
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field. From (4.10) and (3.15), we obtain 

dy. d 
P dt = dt M + M(V.·v), (5.4) 

where we have introduced the well-known identity27 
r1dJ /dt = V.·v. Equation (5.3) is written in 
terms of regions and surfaces which are stationary 
with respect to the reference frame, whereas all 
other equations in this section are written in terms 
of material regions and surfaces which are moving 
with respect to the reference frame. Equation (5.3) 
may be written in terms of material regions and 
surfaces by employing the relations 

a/at = d/dt - V· V., (5.5) 

(d/dt) dV = V.·v dV. (5.6) 

When written in terms of material regions and sur­
faces, Eq. (5.3) takes the form 

11 (aB) 1 M d - -no I{!- dS - H ·-MdV 
S 411" at v dt 

+ i HM.(v·V.M) dV 

+ J n·v l.. HM·HM dS 
S 811" 

= !L 1 (l.. HM.HM) dV. (5.7) 
dt v 811" 

Substituting from (5.4) into (5.7), then from (5.7) 
into (5.2), then from (5.2) into (5.1), recombining 
terms, and employing the divergence theorem, we 
obtain 

~t J
v 

(!PVkVk + pU + 8~ H~H~) dV 

1 ( d 1 aB j 
= s tjVj + Fjp dt JJ.; - n;qj - 411" njl{! at 

+ nj 8~ H~H~v; + n;H~MkVj) dS, (5.8) 

which is a particularly interesting form of the equa­
tion of conservation of energy. Equation (5.8) says 
that the time rate of change of kinetic plus internal 
plus magnetic field energy is equal to the rate at 
which work is done by the surface tractions and 
magnetic exchange torques acting across S less the 
flux of thermal and magnetic energy outward across 
S plus a convective flux of magnetic field energy 
and magnetic dipole energy. Obviously, Eqs. (5.1) 

27 For a derivation, see A. C. Eringen, Nonlinear Theory of 
Continuous Media (McGraw-Hill Book Company, Inc., New 
York, 1962), Sec. 19. 

and (5.8) are completely equivalent and we may 
proceed equally readily from either one. 

Now, with (3.1), (3.4), (4.8), (4.25), (4.26), (4.27), 
and the divergence theorem, (5.8) becomes 

1 [ dU + ( dv; _ aT;; _ M aH~) . 
v P dt P dt aYi k aYk v, 

+ l.. HM dH~ _ l.. HM(aH~ + . aH~ 
411" k dt 411" k at v, aYi 

+ 4 aMk + 4 . aMk) _ M HM aVi 
11" at 'IrV, ay; k k aYi 

aA;; d ap d 
+ aYi P dt JJ.j + Aij aYi dt JJ.; 

+ AiiP a~i (:t JJ.j) + :!: - Ti; :;:] dV = 0, 

which, with (5.4), (5.5), (4.17), and (3.5), becomes 

1 [ dU av; M dJJ.k aA i; d 
v Pdt - Ti; aYi - Hk Pdt + ay. P dt JJ.j 

ap d a (d ) aq.] + Aii aYi dt JJ.i + Ai;p aYi dt JJ.; + aYi dV = 0, 

from which, since V is arbitrary, we obtain 

dU _ av; + (HM dJJ.; aAij dJJ.; 
P dt - T.; aYi P ; dt - ay. dt 

1 ap d) a (d ) aq. - P aYi Aij dt JJ.; - AiiP aYi dt JJ.i - aYi· (5.9) 

Substituting from (4.22) into (5.9), we obtain 

dU av; L dJJ.; 
Pdt = T.; aYi - pH; dt 

(5.10) 

which is a form of the first law of thermodynamics 
for this combined continuum. 

We may now introduce dissipation by assuming 
that the symmetric part of the stress ,,:8 and the 
local magnetic field HL may be written as the sum 
of a dissipative and a nondissipative part. This is 
a restrictive assumption, but it is believed to be 
adequate for the medium being considered. Con­
sequently, we write28 

,,:S = R,,:S + D,,:S, HL = RHL + ~L, (5.11a, b) 

where 

(5.12) 

28 It is not actually believed that the dissipative portion 
of the local magnetic field DHL exists. However, it is being 
kept for purposes of comparison with the well-known phenom­
enological magnetodynamic theory for the rigid solid. 
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and in each case the superscript R stands for the 
nondissipative (stored energy) portion and the super­
script D for the dissipative portion. Substituting 
from (5.11b) into (3.10) and employing (4.10), we 
obtain 

~A = R~A + D~A, (5.13) 

where 
R A 1 (RHL RHL) 
~ = 'iP'" - "', (5.14) 

D~A = !p(",DHL _ DHL",). 

Before proceeding further, we must recall a few 
well-known relations concerning vorticity and spin. 29 

These are 

(5.15) 

where '1 is an axial vector called the vorticity 
which is the local angular velocity of the lattice 
continuum and (,) is the polar tensor of the axial 
vector 0, and is called the spin tensor. Note that 
(,) is the antisymmetric part of the spatial velocity 
gradient. The symmetric part of the spatial velocity 
gradient is given by 

(5.16) 

and is called the rate-of-deformation tensor. Ob­
viously, we have 

(5.17) 

Since ~ = ~s + ~A, we have from (5.11a) and (5.13) 

~ = R ~ S + D ~ S + R ~A + D ~A 

= R ~ + D ~s + D ~A • 

(5.18a) 

(5.18b) 

Substituting from (5.11b) and (5.18b) into (5.10) 
and employing (5.14b) and (5.15)-(5.17), we obtain 

dU R av; RHL dl1-; A a (d ) 
Pdt = T.; ay. - P ; dt - P .; aYi dt 11-; 

D sd DHL(d ) aqi + Ti; i; - P i dt l1-i - Wi;l1-; - ay.· (5.19) 

All current forms of the theory of irreversible 
thermodynamics30

-
32 indicate that for this case the 

19 For a discussion of vorticity and spin see Ref. 27, Sec. 21. 
30 See Ref. 2, Secs. 245-247, 256-258. 
31 B. A. Boley and J. H. Weiner, Theory oj Thermal 

Stresses (John Wiley & Sons, Inc., New York, 1960); Secs. 
1.8-1.11. 

32 S. R. De Groot, Thermodynamics oj Irreversible Processes 
(North-Holland Publishing Company, Amsterdam, 1952). 

mathematical expression of the second law takes 
the form 

a (d) d1] + pAl; aYi dt 11-; = p8 dt ' (5.20) 

where 8 is the positive absolute temperature and 
1] is the entropy per unit mass. From (5.19) and 
(5.20) we also have 

d1] 8p - = DTiS;dii 
dt 

DHL(d ) aqi 
- P • dt l1-i - W.;I1-; - aYi' 

Now, since 

we have 

(5.21) 

(5.22) 

The quantity P d1]/dt + a/aYi (q./8) is called the 
rate of entropy production and will be represented 
by the symbol ~. Then the important postulate 
of thermodynamic irreversibiltity takes the form 

~ ~ O. (5.23) 

6. CONSTITUTIVE EQUATIONS 

Let us record Eqs. (5.20) and (5.22) along with 
the condition (5.23) below for convenience: 

dU R av; R L d 
Pdt = Ti; aYi - pHi dtl1-i 

a (d) d1] 
- pAi; aYi dt 11-; + p8 dt ' (6.1a) 

(6.1b) 

~ ~ o. (6.1c) 

Equation (6.1a) is concerned with recoverable 
(stored) energy whereas (6.1b) and (6.1c) are con­
cerned with irrecoverable (dissipated) energy. The 
portions of the constitutive equations which are 
derivable from a stored energy function (U) and 
the portions which are associated with the dissipa-
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tion are independent and are obtained in completely 
different manners. Consequently, we may determine 
either one first. We will determine the dissipative 
portions of the constitutive equations first. 

Although the portions of the constitutive equa­
tions which are derivable from a stored energy 
function will be general and nonlinear, the portions 
which are of a dissipative nature will be linear, i.e., 
only linear dissipative processes are considered. 
Moreover, since we are not interested in the most 
general possible theory of linear dissipation but only 
in a theory which is deemed to be adequate for the 
materials being considered, we assume that 

D'T~I = Siikldkl, q. = -k.;(aO/aYi), 

DHJ: = -lJ'p(d/-lk/dt - Wki/-lJ, 

where a careful analysis shows thae3.34 

S'ikl = Z ay. ?Jli. ~ aYI 
pO" axp axo ax, ax, ' 

ay. aYi 
k' i = K .. -a -a ' x, x, 

(6.2a, b) 

(6.2c) 

(6.3) 

and Z and K are referred to the undeformed con­
figuration, and where IJ' is a scalar no matter how 
anisotropic the media by virtue of (4.12), (5.12), 
(5.15) and the fact that we are expressly excluding 
nondissipative gyroscopic terms which contribute 
nothing to .:1. It should be noted that all the con­
stitutive equations in (6.2) satisfy Noll's principle 
of material objectivity,36.36 which requires that any 
equation describing the constitutive behavior of the 
material shall be independent of the frame of ref­
erence of the observer. The explicit mathematical 
requirement resulting from the application of the 
general principle to the case treated here simply 
states that all variables appearing in (6.2), which 
are linearly related by the coefficients s.;u, k ii • and 
IJ', shall transform according to the appropriate 
tensor transformation law under time-dependent 
orthogonal coordinate transformations. The im­
portant point to realize is that (d/-lddt - Wk;/-I;) 
is objective whereas d/-lk/dt is not. Moreover, it 
should also be noted that if the vector II be rigidly 
attached to the lattice continuum, DJIL = O. Sub­
stituting from (6.3) into (6.2), employing the well­
known relation37 

33 B. D. Coleman and W. Noll, Arch. Rat!. Mech. Anal. 
13, 167 (1963). 

u Equations (6.2a) and (6.2b) along with (6.3) are special 
cases of Coleman and Nolls Eqs. (3.9). and (3.9)" respectively. 

86 For thorough discussions of the principle of material 
objectivity see Ref. 2, Secs. 293, 296; Ref. 27, Secs. 27, 44; and 
Ref.36. 

88 W. Noll, J. RatI. Mech. Anal. 4, 3 (1955), Sec. 4. 
a7 For a derivation, see Ref. 27, Sec. 19. 

(6.4) 

in which the material strain tensor E .. is defined by 

E 1 (aYk aYk ) 
.. = 2 ax, ax. - Ii.. , 

and using the chain rule of differentiation, we obtain 

D 8 ay. ay; d 
'T.; = ax

p 
axo ZlIO .. dt E .. , 

(6.5) 
ay, ao 

q. = --K -. , ax, ,m ax ... 

The scalar IJ' cannot be negative and the matrices 
K .. and Z(pO)( .. )38 must be matrices of nonnegative 
quadratic forms, by virtue of (6.1c). The actual 
form taken by the matrices K .. and Z(lIO)(") is 
determined by the point-group symmetry of the 
lattice in the undeformed state. In a triclinic crystal 
there are 21 independent Z (po) ( .. ) and 6 independent 
K... The Z (po) (r.) are coefficients of mechanical 
viscosity, the K .. are the usual coefficients of thermal 
conductivity, and IJ' is a coefficient of magnetic 
dissipation which is directly related to the Gilbert 
damping factor. Note that no crossinteractions of 
a dissipative nature have been considered. It is, 
of course, quite conceivable that they exist. 

We now turn to the determination of the portions 
of the constitutive equations which are derivable 
from a stored energy function. We begin by defining 
the free energy F in the usual manner, i.e., by 

F = U - TlO, (6.6) 

and substituting the material time derivative of 
(6.6) in (6.1a) to obtain 

a (d) dO 
- pA' i ay. dt /-Ii - PTI dt . (6.7) 

In view of the relations, 

av; ax ... d aYi a (d ) ax ... d a/-li 
ay. = ay. dt ax ... ' ay. dt /-Ii = ay. dt ax .. ' 

Eq. (6.7) can be written in the form 

(6.8) 

8S It is to be understood that Z(N)(ro) is here considered 
as a 6 X 6, 2-index matrix. 
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Motivated by (6.8), we assume 

F = F(ay;/axm , p", ap,;/axm , B), (6.9) 

whence 

At this point we must remember that 12 of the 
22 time derivatives appearing on the rhs of (6.8) 
and (6.10) are not independent, but are connected 
by the four relations given in (4.12) and (4.13). 
Consequently, we must introduce four Lagrangian 
undetermined multipliers, X and L m, then multiply 
(4.12) by X, (4.13) by L ... , and add the sum to the 
rhs of (6.8) while substituting from (6.10) to obtain 

[
R ax", aF J d (ay;) 
Tij ay, - P a(ay;/ax",) dt ax", 

- p[ RH~ - Xp" - L ... :~: + ::.J ~t p" 

[ A ax", L + aF J d (a/J.;) 
- P if ay, - ... P,; a(ap,;/ax ... ) dt ax", 

- p[ ~ + ~J ~: = o. (6.11) 

Since we have introduced the proper number of 
undetermined multipliers in the usual Lagrangian 
manner, we may treat all 22 time derivatives appear­
ing in (6.11) as if they are independent. Moreover, 
we assume that R~, RH L

, A, ~, X, and L are in­
dependent of d(ay;/ax ... )/dt, dp,Jdt, d(ap,;/ax ... )/dt, 
and dB/dt. Consequently, from (6.11), we must have 

R ax... aF 
Tij ay, = P a(ay;/ax ... ) , 

R HI: = _ aF + X . + L ap" 
• !l p" '" !l , 

A ax..._ 
if ay, -

vp" vX .. 

aF 
a(a/J.;/axm) + Lmp,;, 

~ = -aF/aB. 

(6.12a) 

(6.12b) 

(6.12c) 

(6.12d) 

The Lagrangian multipliers may be determined by 
Bubstituting from (6.12b) and (6.12c), respectively, 
into the conditions RHL°ta = 0 and A°ta = O. The 
results are 

(6.13a, b) 

where we have made use of (4.11) and the fact 

that the material gradient of (4.11) vanishes. Sub­
stituting from (6.13) into (6.12) and solving the 
resulting equations for R~ and A, we find 

aF 
~ = - aB ' 

(6.14a) 

(6.14d) 

ill which we have made use of the well-known 
relation 

(ayz/ax ... )(ax",/ay,) = ali' (6.15) 

We must note clearly that F cannot be any func­
tion of aydax" P,k, aP,k/aXI, and B because F must 
be invariant in a rigid rotation of the deformed 
and magnetized body, and any arbitrary function 
of the 22 assumed variables (7 vectors at the point 
Yk and a scalar) will not be so invariant.a9 Now, 
there is a theorem on invariant functions of several 
vectors due to Cauchy40, and used by Toupinll in 
a similar connection which states that if f(V~, V~, 
. .. , V7) is a single-valued function of the compo­
nents of n vectors which is invariant in a rigid 
rotation of the system of vectors, f must reduce 
at most to a function of their lengths and scalar 
products, 'll"AB = V~ V~, and the determinants of 
their components taken three at a time, /lABe = 

eijkV~V~V~.41 Thus, in our case, the theorem asserts 
that the stored energy function F must reduce at 
most to a function of Band 

Glm = (aP,k/aXI)(aP,kjaxm ) , 

N, = (aYk/aXI)P,k, 

Dim = (aP,k/aXI)(aYk/aX .. ), 

Hm = P,k(aP,k/aXm), 

J 1 ay, ay; aYk 
= ijeijkelm" -a -a -a ' 

XI X .. X .. 

(6. 16a) 

(6. 16b) 

(6.16c) 

(6.16d) 

(6.16e) 

(6.16f) 

(6.16g) 

3D Toupin gives an excellent discussion of this point in 
Ref. 11, pp. 887-888; 901-904. 

40 A. L. Cauchy, "Memoire sur les Systemes Iaotropes de 
Points Materiels," Mem. Acad. Sci. XXII, 615 (1850) [Oevres 
(1) 2, 351.) 

U A proof may be found in H. Weyl, The Clas8ical Groups, 
Their Invariants and Representations (Princeton Univer81ty 
Press, Princeton, New Jersey, 1946), Chap. 2, Sec. 9. 
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(6. 16h) 

(6.16 i) 

(6.16j) 

(6. 16k) 

(6.161) 

(6.16m) 

Consequently, we find that the original list of 
variables shown in (6.9) (excluding fJ) can occur 
only in the 63 combinations listed in (6.16). We 
will now show that only the 18 quantities Clm, N I , 

DIm need be considered without any loss in gen­
erality, since all of the remaining 45 quantities are 
expressible in terms of the aforementioned 18. To 
this end, we first solve (6.16d) and (6.16e) for fJ." 
and afJ.,,/axm in terms of N

" 
aXI/ay"" and Dm .. and 

obtain 

fJ.k = N,(axday,,), (6.17) 

ap,,/axm = Dm,,(ax .. /ay,,) , (6.18) 

and then note that 

Clil = (aXdaYk)(aXt/aYk) , (6.19) 

where C-1 denotes the reciprocal of C. We then 
substitute from (6.17) and (6.18) into (6.16) and 
with the aid of (6.19) obtain 

GZm = Dm .. C-;'!D,r , 

H", = NzC~!Dmn' 

Now, it is well known42 that 

(6.20a, b) 

(6.20c) 

(6.21) 

In view of (6.21), we evaluate det D",n and find48 

L = (1/ J) det D",,,. (6.22) 

We now substitute from (6.17) and (6.18) into the 
remaining relations in (6.16) and obtain 

---

Q.n = (I/2J)e'k.ezm.CII Dm"D"., 

WI", = (1/ J)e .... C,.Dm,.N., 
42 See Ref. 2, Sec. 30 for a proof. 

(6.23) 

'3 See Appendix A for detailed derivations of Eqs. (6.22) 
and (6.23). 

Kr = JC~!N., 

R" = (1/2J)e",e,,,,,,D ,,Dm.N,. 

We have now demonstrated that the quantities 
appearing on the left-hand sides of Eqs. (6.20)-(6.23) 
are directly dependent on the Clm, Nl, and Dim, 
and consequently may be eliminated from the list 
of variables in (6.16) without any loss of generality. 
Thus, we have reduced F to the form 

F = FCC .. , N" Dr., fJ), (6.24) 

in place of the form shown in (6.9). 
Now, we must realize that any arbitrary function 

F of C, N, D, and fJ will not necessarily satisfy 
(4.15) by virtue of (6.14c). To find the additional 
restrictions on F which are engendered by (4.15) 
we first note that 

aF aF aD.. aF aYI (6.25) 
a(afJ.d ax",) = aD .. a(afJ.d axm ) = aD",. ax, ' 

and then substitute from (6.25) into (6.14c) to obtain 

A .. = - aYi ~ [ay; _ .1 ay" fJ. fJ..J. (6.26) 
., aXm aDm, aXr fJ.! ax, k, 

We now substitute from (6.26) into (4.15), and 
employ (6.17)-(6.19) with the result 

aF DC-I + 1 aF D C-I aYk ax" 
- aD mr ra ""2 aD m. ra -a ;- fJ."l/oj 

mp I/o. m. X. UYi 

aF D C- I + 1 aF DC-I ay" ax. 
= -aD tnT rp 2 aD Vlf'''P -;-- -0 JLkP.i· - ~ - ~. ~ 

(6.27) 

These comprise a system of three independent dif­
ferential equations in the 19 variables C, N, D, 
and fJ, which must be satisfied by F. Consequently, 
F must reduce to an arbitrary function of any 
19 - 3 = 16 functionally independent solutions 
of (6.27), which must be composed of C, N, D, and 
fJ. It is trivially obvious that C, N, and fJ constitute 
10 such solutions. Six additional solutions are given 
by D;aC-;'~D;b == ri;' as may be verified by substitut­
ing any function I of r into (6.27) to obtain 

al [ D C-1D C- I + 1 D C-1D C- I 

iJ r . . - ia a-1' i r r(1 2 ia a4 i r rQ 
1.1 fJ. 

X iJYk oXp + D C-1D C-1 
-0 -0 fJ.kl/ol i...;t '" 

X. YI 

1 D C-1D C- I iJYk ax. ] 0 -""2 i. a. ;t 'V -iJ -iJ fJ.kfJ.1 = , fJ.. x, YI 
(6.28) 

in which we have introduced the convention 
al/ar.; = iJl/arji and employed the relations 
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at at ari; 2 at D c- I 

aD = ar-- !lD = !lr_ 'a aq' 
mq 1., U ma U 1m 

(6.29) 

In (6.28), the second and fourth terms inside the 
brackets vanish identically since 

D.aC--.!(aYk/aX.)P.k == P.k(aP.k/aXi) = 0, 

and the diagonal components (i = j) of the remain­
ing two terms naturally cancel one another, while 
the off-diagonal components (i ,t. j) cancel one 
another in pairs upon contraction with at/ar i ;, and 
the r i ; are indeed six solutions of (6.27). From 
(6.20b) we see that r == G, and thus that F may 
be reduced to the form 

F = F(C, N, G, 0), (6.30) 

in place of the form shown in (6.24). It is interesting 
to note that G is invariant in a rigid rotation of the 
entire spin continuum with respect to the lattice 
continuum. Thus it is clear that condition (4.15) 
has served to make the exchange energy invariant 
in a rigid rotation of the entire spin system as it 
is in the quantum mechanical description. 9

•
lo 

It should be noted that C'm does not vanish 
when the material is in its natural undeformed state. 
Consequently, it will be convenient for our purposes 
to replace Greens' deformation tensor C in the energy 
function F by the material strain tensor E, where 

(6.31) 

and does vanish when the material is in the un­
deformed state. Of course, since C is uniquely de­
termined by E, this replacement is always permissible 
and we may replace (6.30) by 

F = F(E, N, G, 0). (6.32) 

From (6.32), (6.31), and (6.16), we obtain the 
relations 

aF = aF ay; + aF p._ (6.33a) 
a(ay;/ aXm) aErm aXr aN m " 

aF _ aF ay. 
ap', - aNl ax, ' (6.33b) 

(6.33c) 

in which we have introduced the conventions 
aF/aEro = aF/aE", and aF/aGr", = aF/aGmr. 
Substituting from (6.33c) into (6.13b), we find 

L - ~ aF _ ~ aF aP.k - 0 (6.34) 
m - 2 !l(!> /!l ) P.k - 2 G P.k - . p.. V VP.k vX", p.. a rm aXr 

Substituting from (6.33) into (6.14) and employing 
(6.34), we obtain 

(6.35a) 

(6.35b) 

aF 
'r/ = -ao ' (6.35c) 

in which it is to be assumed that aEr",/aE",r = 0 
and aGmr/aGrm = 0 in differentiating F. Remember­
ing that R~ = R~S + R-:A, and substituting first 
from (5.14a), and then from (6.35b) into (6.35a) 
we find 

R s [ay• aF ay; 
Ti; = P aXr aE

T
• ax. 

+.! aF (aYi _ + ay; _)J. 
2 aN, ax, p., ax, p.. (6.36) 

Thus, it is clear that the antisymmetric portion 
of the nondissipative part of the stress tensor is 
derivable from an energy function and has just the 
value required by the conservation of angular 
momentum. 

From (5.11), (6.2c), (6.5), (6.35b)-(6.35d), and 
(6.36) we may write the constitutive equations in 
the invariant vector form 

-:' = pYV.':~'V.y + !p(:~'V.YVr 

+ YV •. (z: :t E )'V.y, 

H L __ aF V + 1 aF 
- aN' .y p.! aN' Vs'VV 

- uP(~t V - (,)'V) , (6.37) 

A = -2yv.·aF/aG·V.v, 
'r/ = -aF/ao, q = -yV.·y,·V.o. 

Thus, all that remains in the determination of 
explicit constitutive relations is the selection of a 
form for F. 

7. SURFACES OF DISCONTINUITY 

In this section we determine the jump conditions 
at moving surfaces of discontinuity which mayor 
may not be material. To this end we begin with 
(3.1), (3.2), (4.2), (4.28), (4.29), and (5.22), re­
spectively, in the form 

(7.1) 
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n 

FIG. 6. Diagram showing a surface of discontinuity moving 
through an arbitrary region. 

:t Iv pv dV = is n·~ dS + is n·T
M 

dS, (7.2) 

is n·A )( pv dS + Iv Pl' )( (lIM + HL) dV 

= - - "'II dV d 1 1 
dt V'Y rr:r , 

fa HM·dy = 0, 

is n·B dS = 0, 

!! f Pl1 dV + f n.! q dS = f A dV, 
dt v 8 (} v 

where TN: is the Maxwell tensor defined by 

TN: = 1- (BHM _ l.HM.HMI ) 
4~ 2 u , 

and Iv is the idemfactor eie;. Note that 

Vv·TM = M'VuBM = f, 

so that 

is n·T
M 

dS = Iv f dV, 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

and (3.2) may be obtained from (7.2) when suitable 
continuity conditions are assumed. Equation (3.3) 
is not being employed since it. gives the same jump 
conditions as (3.2). 

The jump conditions are obtained by applying 
(7.1)-(7.6) to a region R containing a moving surface 
of discontinuity s shown in Fig. 6 and then allowing 
the region R to shrink down to S in such a way 
that the volume of R vanishes while the area of s 
remains finite as shown in Fig. 7. Equations (7.1)­
(7.3) and (7.6) are presently written for a moving 
material region. The procedure for determining the 

jump conditions, consists of writing these equations 
for a fixed region R which coincides instantaneously 
with the moving region while considering the fact 
that s is a surface of discontinuity moving with 
a speed Un, which divides R into two parts R+ and 
R-, in each of which the pertinent functions are 
continuously differentiable.44 Thus, Eqs. (7.1)-(7.3) 
and (7.6) must first be converted to the proper 
form and then applied as stated. On the other hand, 
Eqs. (7.4) and (7.5) are already written for such 
a fixed region. We will give a detailed derivation 
of the jump conditions resulting from (7.3), but 
will simply write down the jump conditions resulting 
from the other equations, since they are obtained 
in a similar manner and are generally well known. 

Equations (5.5) and (5.6) along with the divergence 
theorem enable us to write (7.3) in the form 

1 n·A )( Pta dS -1 ! n·vPl' dS 
• 8 'Y 

+ Iv Pl')( (lIM + HL) dV = :t Iv; Pl'dV, (7.8) 

in which S encloses a region V in which v and Pl' 
are continuously differentiable. Application of a 
generalized form of Eq. (7.8) to the region shown 
in Fig. 6 yields 

1 n·A)( Pl' dS + 1 n·A)( Pl' dS 
8+ 8-

i 1a i1a 
- R+ ~ at (Pl') dV - R- ~ at (Pl') dV = 0. (7.9) 

Taking the limit of (7.9) as the volume R+ + R­
approaches zero while the area of S remains finite 

n'" 

s'" 

n-
FIG. 7. Diagram showing the limiting region considered in 

obtaining jump conditions. 

« For an excellent discussion of the procedure see Ref. ~, 
Sees. 192 and 193. 
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and assuming that p, l', H M, HL and iJ(Pl')/iJt 
remain bounded, we find the jump condition 

n+ o[A x Pl'] + u,,[~ Pl'] - n+.[v ~ Pl'] = 0. (7.10) 

where we have introduced the conventional notation 
[C] for C+ - C-. Equation (7.10) must be satisfied 
at any possible surface of discontinuity, be it 
material or not. If the surface of discontinuity is 
material, Un = n + ,v+ = n + ov- and (7.10) reduces to 

n+ o[A x Pl'] = 0. (7.11) 

The remammg jump conditions-which may be 
obtained in essentially the same manner and cor­
respond, respectively, to (7.1), (7.2), (7.6), and 
(7.5)-are given by 

u .. [p] - n+ o[vp] = 0, 

n+'[~ + TM] + u,.[pv] - n+o[vpv] = 0, 

n+ 0 B q] - U .. [P17J + n+ o[VP17] = 0, 

n+ '[B] = 0. 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

The tangential jump condition corresponding to 
(7.8) is obtained in the same manner as in mag­
netostatics and is given by 

(7.16) 

If the surface of discontinuity is material, (7.12) 
degenerates to nothing and (7.13) and (7.14), 
respectively, reduce to 

n+ o[~ + TM] = 0, (7.17) 

n+.[~ q] = 0, (7.18) 

whereas (7.15) and (7.16) remain unchanged. 

8. RECAPITULATION OF THE NONLINEAR 
THEORY 

In this section we set forth. in one place the 
complete system of differential equations and bound­
ary conditions at material surfaces of discontinuity 
of the nonlinear magnetomechanical theory which 
has been developed. These consist of the following: 

The dynamic equations 

V~·~ + M·V.,HM = p(d/dt)v, 

pJ = Po, 

l'X(HM - V~,A - ;V.poA + HL) 

1 d 
= ;y dt l', 

V",B = 0, 

The constitutive equations 

~s = PYV~':~'Vzy + !p(:~oVzYl'r 

+ YVzo(z: ?t),VzY, 

L iJF 1 aF 
H = -aN°VzY + J.I~ aN°V"y,,, 

- qp(~ - 6)'l') , 

iJF 
A = -2yVz'aGoVzl', 

aF 
'11 = - iJO ' q = -yVz'1!.·V"O. 

The relations 

6) = !(V~v - vVt/), J = det V~y, 

E = !(V"yoyV", - I,,), 

M 
l' = p' 

N = V",Y'l', 

The auxiliary condition 

and the identity 
VII = V.x·V",. 

The boundary conditions 

n+ o[~ + (1/4'1I-)(BHM - !HM,HMI I1)] = 0, 

n+ ,[A x Pl'] = 0, n+ x[HM] = 0, 

n+·[B] = 0, n+ o[(1/8)q] = 0. 

(8. la-g) 

(8.2) 

(8.3a-j) 

(8.4) 

(8.5) 

(8.6) 

Equations (8.1)-(8.3) may readily be reduced to 
seven equations in seven variables by employing 
(8.4), (8.5), and making the appropriate straight­
forward substitutions. The seven equations cor­
respond to the three of (8.1a), any two of (8.Id), 
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(S.lf) and (S.lg). The variables are' the three com­
ponents of y, and two of the three components of 
ta, IP and o. The seven variables must also satisfy 
the nine jump conditions in (S.6), possibly 
along with some statements about [y], [II] and 
[(I/J.'~)ta Xdtaldt] at every material surface of 
discontinuity. However, these equations are hope­
lessly nonlinear and impossible to solve in their 
present form, and consequently must be modified 
before anything can be done with them. 

9. SUPERPOSITION OF A SMALL DYNAMIC 
FIELD ON A LARGE STATIC FIELD 

The linear equations for a small dynamic field 
superimposed on a large static field will now be 
obtained from the system of nonlinear equations 
recorded in Sec. S. However, before proceeding we 
must introduce the intermediate configuration ~ in 
addition to the natural (material) and present 
(spatial) configurations x and y. The intermediate 
configuration is the present configuration at some 
time t = ot. Consequently, the brief discussion of 
deformation theory given in Sec. 3 and Eq. (3.12) 
imply that 

~, = MXk), 

y, = Yi(~k' t), 

Xi = x,(h), 

~i = t(Yk, t). 
(9.1) 

Since we are concerned with a small deformation 
superposed on a large, we define the mechanical 
displacement u by 

Y,(~, t) = ~i + Ui(~' t), (9.2) 

with the restriction 

(9.3) 

Also, let ota, oIP and 011 denote the remaining portion 
of a static solution of the nonlinear equations 
referred to the intermediate configuration ~. More­
over, only situations in which 011 is constant are 
being considered. Then we may define the dynamic 
portions of the magnetic moment per unit mass ii, 
the magnetic potential (p and the temperature {j by 

ta(~, t) = otam + ii(~, t), 

IP(~, t) = oc;>m + cP(~, t), 

O(l;, t) = 00 + O(l;, t), 

with the restrictions 

JiL 
Iota I « 1, cP « 1, 

oc;> 

{j 
0 0 « 1. 

(9.4a) 

(9.4b) 

(9.4c) 

(9.5) 

We now wish to express the constitutive equations 
(8.2) in terms of the small dynamic variables u, 

ii, (p, and e. However, before we can do this we 
must first express all quantities appearing in (S.2) 
in terms of the small dynamic variables and then 
write the partial derivatives of F with respect to 
E, N, G, and II as a power series in these newly 
defined variables, retaining, of course, only linear 
dynamic terms. 

Now, from (9.1) and the chain rule of differentia­
tion, we may write 

aYk = a~m aYk 
axz axz a~", ' 

(9.6) 

and from (9.2) we obtain 

aYk;a~m = 5km + auJa~m' (9.7) 

Substituting from (9.4a), (9.6), and (9.7) into (S.3f), 
(S.3i), and (8.3j), respectively, and retaining only 
linear dynamic terms, we find 

E = 1i' +! at a~n (au; + aun) 
". ou". 2 ax" ax. a~n a~;' 

(9.S) 

G = G + (a OJ.'k a~T + a OJ.'k a~T) aj1k 
". 0 ". ax" ax. ax. ax" a~r ' 

in which the static quantities have been defined by 

E 1 (a~k a~k ) 
o ". = 2 ax" ax. - 5". , 

G _ a OJ.'k a OJ.'k. 
o ". - ax" ax. 

(9.9) 

Expansion of aF laE .. in a Taylor series about the 
~ configuration yields 

aF aF) a
2

F) 
aE = aE + aE aE (E". - oE".) 

r. r.. 0 pq r. 0 

a2F). a2F ) + aN" aE .. 0 (N" - oN,,) + aG". aEro 0 

a2
F ) x (G". - oG".) + all aEra 0(11 - 011) + . .. . (9.10) 

Since only the equations which are linear in the 
dynamic variables are considered here, terms of 
higher order than the first may be ignored. Equations 
analogous to (9.10) may be obtained for the quanti­
ties aF laNz, aF laG .. , and aF jail simply by replacing 
Era in (9.10), respectively, by N I , G .. , and II. Sub­
stituting from (9.S) and (9.4c) into (9.10) yields 

aF = ~ + ! a
2
F a~; a~n (au; + aun) 

aE.. a oE.. 2 a aE".a aE .. ax" ax. a~n a~; 
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with analogous expressions available for aF/aNz, 
aF/aGro , and aF/aO. From (8.1c), (8.3e), (9.6), and 
the fact that the determinant of a matrix product 
is equal to the product of the determinants of the 
two matrices, we obtain 

in which Po (det a~m/axz)-l = p represents the mass 
density in the intermediate configuration. Now, from 
(9.7) and (9.3), in the linear approximation we obtain 

(det aYk/a~mrl = 1 - aUk/a~k. (9.13) 

Thus, we may write 

p = p(l- aUk/a~k). (9.14) 

From (9.2) we see that (8.3b) may be written 

Vi = auJat. (9.15) 

From (9.2) and (9.1d) we obtain 

5km = a~k;aYm + aUk/aYm. (9.16) 

From the chain rule of differentiation, (9.7), (9.15), 
and (9.16), we find that in the linear approximation 
(8.3c) and (8.3d), respectively, may be written 

liE =! a~k ~~ (aUk + auz) 
dt ro 2 ax. ax. at a~l a~k' (9.17) 

1 a (aUk aUI) 
Wkl = 2 at a~l - a~k . 

We may now substitute from (9.4), (9.6), (9.7), 
(9.11), (9.14), and (9.17) into (8.2) and after some 
tedious manipulation in which only static terms and 

terms linear in the dynamic variables are retained, 
we obtain 

in which the static terms are given by 

s __ [~at a~; 
07i; - P a oE •• ax. ax. 

and the dynamic terms are given by 

f: aUk i! + fl,ijkl a~l + fijU, 

(9.18) 

(9.19) 

(9.20a-e) 

where the unfamiliar coefficients in (9.20) are given 
by 

".. = _[~ (_ a~i a~j 5 + a~i a~m ". + a~j a~m ". )' ".,km P!:l E !:l!:l km !:l !:l U,k !:l !:l U,k 
u 0 ro uX, UX. uX, uX. UX. UXr 
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-2 elF a~i a oJl.. (a~i _1. a;" JI. JI.) 
11 •• ; = a oGp.a aNI ax. axp aXI JI.! aXI 0 k O. I 

b. = a
2

[i' (a1;, _ 12 a1;" OJl.1o OJl.') I 

a 08a oNI aXI JI.. aXI 

{3;;"1 = -2[~ a;, a1;" a. + 2 a2
F a;, a1;" a oJl.; a OJl.I] 

a oGm• aXm ax. ,I a oGp.a oG",. ax", ax. ax. axp , 

Pw = -2 a2
[i' a~i a~k a oJl.I 

a oNpa oG",. ax", axp ax. ' 

-2[~.E£ a all; a + a2
[i' a~i a~k a~l a all; + a2

[i' a~i a~z a oJl.,· Il] 
a oGm• ax", ax, ki a nEp.a oG",. aXm axp ax. ax. a oNpa oG",. ax", axp ax. 0 k I 

f.. = -2 a2
[i' a;i a all; , 

., a 08a oG",. aXm ax, 

~ a;, a~j 
"ii = ".", -;---;--. 

(IX. UXm 
(9.21) 

Utilizing the chain rule of differentiation, SUbstituting from (9.18), (9.4), (9.14)-(9.16) into (8.1a), (8.1b), 
(8.ld), (8. Ie), (8.1f) and (8.1g), respectively, employing the static solution of the nonlinear equations 
referred to the intermediate configuration ~ and retaining only linear dynamic terms, we obtain 

af;; + ~ alP! _ (a 01'.; + _ a oH1f a + _ a oH1f) aUm + _ a oH1f _ _ ~ a2
u; 

a;. P oil. a;. a;m P all. a~k ,m P all, a~m a~. P a~, JI.. - P at2 , 

~A 1. -[- HL -ffL H L- H-L ( HL HL ) aUk] T;; = 'I P Il, 0 i - Ollin i - 0 ,Jl.1 - olll ; - oil, 0 I - a ,ollj a;k ' 

[ 11M _ aA I " + fjL _ A a2
U m + (a oAI" _ oAI. ap ) au", _ Alk ap] 

eli" oJl.;" a~1 k 0 110 a;l a;m a~.. p a;", a;, p a~l 

+ ~! eHkiIi ollkOJI..[oH;V - a ~~!T] = ; att, , 

f1~ = _ a,p _ u M au" 
a;, ou . .!: a;, ' 
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where aE/dt and 6) are given by (9.17) and ~', 11\ 
A, ~, and Ii are given by the constitutive equations 
(9.20). Thus we see that if the dissipation equation 
(9.22f) is coupled to the others, the system is still 
nonlinear even in this simple case. However, if either 

(9.23) 

or 

(9.24) 

the system can be linearized. If all of (9.23) are 
satisfied then (9.22f) and (9.20d, e) uncouple from 
the remaining equations, none of which then con­
tain O. The remaining equations can then be solved 
independently of (9.22f) and (9.20d, e), after which 
these latter equations, which are linear in 8, may 
be satisfied to find 8. If on the other hand all of 
(9.24) are satisfied but some of (9.23) are not the 
system remains coupled, but (9.22f) becomes linear. 

The boundary conditions are obtained by sub­
stituting from (9.4), (9.14), and (9.18) into (8.6), 
employing the static boundary conditions while 
assuming that the configuration y is approximately 
the configuration ~ and retaining only linear dynamic 
terms with the result 

n+ .[~ + (1/41r)(BoH1'4 + 013111'4 

- oH1'4.111'4I~)l = 0, 

n+ '[oA)C ,oj + A)C pov - oA x PovVc'u] = 0, 

n+ x[it1'4J = 0, n·[BJ = 0, n+ .[q] = 0, 

where 

oB = oHM + 47r,o oV, 

B = itM + 47r,oj - 41rp ovVE,u, 

V t = e. O/iJ~i' 

(9.25) 

(9.26) 

Along with (9.25) there may be some statements 
about fuj, [8J and [1!p,!ov xajlatJ. 

We now take a polynomial approximation for F 
in the form 

F = -2
1 

CiiklEiiEkl + !PoxHN,N; + !PoCtiiGH 
Po 

+ !c0
2 + E~;;EijN" + PObiiklEijN"N, 

(9.22a-f) 

+ higher-order terms in N, (9.27) 

where the constants c'm, Xii, aii' 0, flH, bm;l, f1i:H' 
'l'm, .. , and "ii will be referred to as the elastic, 
anisotropy, exchange, thermal, piezomagnetic, mag­
netostrictive, magnetoexchange, exchangestrictive 
and thermoelastic constants, respectively, Note that 
no thermomagnetic coupling term has been included 
in (9.27). We are now in a position to formulate 
and solve boundary-value problems, which we will 
do in a forthcoming paper. 

It is interesting to note that the material con­
stants in (9.20) are composed of combinations of 
the material constants in (9.27). However, on the 
basis of existing experimental evidence for yttrium 
iron garnet, one term in each combination is domi­
nant and all other terms in that combination 
are negligibly small compared with it. On the basis 
of the same experimental information the anti­
symmetric portion of the stress tensor turns out to 
be negligibly small compared with the symmetric 
portion. On the other hand, it does not seem evident 
a priori that such terms will always be negligible. 
These matters will be discussed in detail in a forth­
coming paper. 
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APPENDIX A 

To derive (6.22) consider the scalar 

from which, with (6.16e), we obtain 

d t D = 1. op" Oil, Ollt ~ OY. OYt 
e ..... ge.;k ax, ax; fJXk elm .. OXI (JX

m 
ox .. ' 

whence, with (6.l6g) and (6.16h) we find 

(AI) 
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The relations in (6.23) are derived with the aid 
of some of (6.16), (6.17)-(6.19), and the well-known 
tensor identity e,m.elm, = 2«5 .. as follows: 

W aYi D ax" N ax, 
I ... = eiik -;- "'n -;- r -;- , 

(A3) 

UXI UYi UYk 

ax. ax" ax, C D N = eiik -;- -;- -;- h mit " 
uy, UYi UYk 

(A4) 

(A5) 

(A6) 
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Quantization of Electrodynamics in the Axial Gauge 
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The so-called axial gauge condition As(x) = 0 is shown to be inconsistent with the condition of 
Lorentz invariance. This inconsistency is resolved herein. 

INTRODUCTION 

RECENTLY, it was pointed out by Schwingerl 
that the description of non-Abelian gauge fields 

in the axial gauge cannot be complete. In fact, such 
a gauge condition, namely Aa(x) = 0, cannot lead 
to a complete and consistent theory in electrody­
namics either. We here explore the necessary modifi­
cations, which must be made, so as to have an ac­
ceptable formalism. 

The inconsistency is resolved once we are able to 
unite the assumption that all local field quantities 
must vanish at spatial infinities with the re­
quirement that the electromagnetic field has two 
and only two independent degrees of freedom. We 
shall also show that these conditions are enough 
to eliminate the two-dimensional gauge arbitrariness 
inherent in the condition Aa(x) = 0.1 These con­
siderations can be extended to non-Abelian gauge 
fields. 

GAUGE CONDITIONS 

We shall use the Hermitian Dirac field 'l1. The 
Lagrangian density is 

L = -!F~'(a~A, - a,A~) + iF~'F~. 
+ !'l1iS'Y~' a~'l1 + (!'!.)m'l1~ + lAM 

where the current is 

and 

is the antisymmetric imaginary charge matrix. 
is = i'Y° (and is'Y~) are real (imaginary) and antisym­
metric (symmetric), and 

h~, 'Y'} = -2t' = -2C1 

I 1 J. 
In this paper, all Latin indices run from 1 to 2; 
* John Parker Fellow. Present address: Institute for Ad­

vanced Study, Princeton, New Jersey. 
1 J. Schwinger, Phys. Rev. 130,402 (1963); R. L. Arnowitt 

and S. I. Fickler, Phys. Rev. 127, 1821 (1962). 

all Greek, 0 to 3. Repeated indices are to be summed 
over properly, unless specified otherwise. 

We tentatively assume that A;,(x) = 0 is a com­
plete and consistent gauge condition. The Euler's 
equations, which result from the above Lagrangian 
density, are divided into two sets: equations of 
motion and equations of constraint. The former 
set includes all those which contain explicit time 
derivatives, i.e., 

aoA; = a,Ao + Foi , 

aoFio = t - aaFi3 - a;Fii
, (1) 

except one, 
(2) 

which can be shown to follow from (1) and the 
continuity equation 

aJ~ = O. 

Equation (2) is therefore a member of the latter 
set, which, in addition, consists of 

F oa = -aaAo, (3) 

Fii = a,A; - a;Ai' (4) 

Fai = aaA ;, (5) 
and 

a;Fo; + aara = l· (6) 

The significance of this separation is that all field 
quantities in (I)-A" FO., and if;-are independent 
dynamical variables. The rest of the field quantities 
are dependent; they can be expressed in terms of 
A" FO" and if;. 

The integrated form of (6) is 

poa(x) = ! J dx' e(xa - x~) c5
2(x - x') 

X [lex') - a:ri(x')]' (7) 
where 

1319 
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and 

E(X) = { 1 x > 0, 
-1 x < 0, 

while its Fourier transform is 

ikaFoa(k) = l(k) - ikiFOi(k), 

wherein we have also defined 

(8) 

O(X) = ~ ~! eiko''O(k, t) = ~ ~l eikOxO(k) 

for any field quantity O(x), V = La being the 
volume within which we enclose our system for 
quantization. 

When ka = 0, if Foa (k) is finite, (8) becomes 

ka = 0: l(k) - ikiFOi(k) = O. (9) 

This is equivalent to the assumption that in (7) 

Foa(x) = ±! J dx' 02(X - x') 

X [lex') - dWO,(X')] = 0 

xa = ± GO. (10) 

In turn, if we accept (10), we obtain (9). These 
two equivalent conditions assert that the longi­
tudinal components of FO, (ka = 0) [denoted by 
FOiL(ka = 0)] are not independent degrees of 
freedom. We here see a contradiction, because (1) 
expresses that all Fourier components of FO/(x) are 
independent. 

This alarm is, however, not completely unpleasant, 
for (2) leads to 

X [lex') - dWOi(X')]. 

If (9), or its equivalent (10), does not hold, then 
Ao(x) ~ GO. To have a convergent theory in the 
axial gauge, it is mandatory that (9) and (10) 
should be a part of the gauge conditions. On the 
other hand, if this is the situation, we have yet to 
overcome the contradiction we just mentioned. 
There is one way out of this dilemma. We shall 
first of all show that Ag(k) = 0 cannot be main­
tained when ka = 0 for the class of potentials 
A,.(x) which have finite Fourier transforms around 
ka = 0 and over a certain domain of kl and k2.2 
Under an infinitesimal Lorentz transformation, 

x ~ x = lx = x + EX, 
2 The requirement here is more easily matched when we 

consider quantization in a. finite volume. 

and 

A,.(x) ~Aix) = Ap(x) + E:A,(x) + d,.A(x) , 

where A(x) is an infinitesimal gauge transformation, 
which must accompany the Lorentz transformation 
l in order to guarantee that the same gauge condition 
holds in the other Lorentz frame. To have an in­
variant gauge condition, we must have 

Aa(x) = 0 = Aa(x) + E;A,(x) + daA(x) 

or, in Fourier components, 

E3iA i(k) + EaoA O(k) + ikgA(k) = O. 

For the class of potentials we are considering, 
when kg = 0, A(k) must be finite in order that 

Ai(k) = Ai(k) + E~A.(k) + ikiA(k) 

be consistent. Therefore, we have 

ka = 0; EaiA i(k) + EaoA 0(k) = 0, 

Ea, and Eao are arbitrary; the above condition can 
be matched only if 

ka = 0; (11) 

But this is too stringent; therefore, necessarily, 

kg = 0; 

although 

ka ¢ 0; Aa(k) = o. (12) 

A new gauge condition is now needed, which must 
be compatible with (9), when ka = 0. In fact, (9) 
already suggests what this new condition may be, 
namely the radiation gauge condition 

ka = 0; kiA'(k) = O. (13) 

There are still other advantages in choosing (13): 

(1) We can have a Lorentz-invariant theory; e.g., 
it can be shown thae 

-i[TO(x) , TO(x')] •• = •• , 

= - [Tk(X) + Tk(x')]dkO(X - x') (k = 1,2,3) 

in the modified axial gauge which we propose here, 
but 

-i[TO(x) , TO(x') 1 •• -•• , 

= - [Tk(x) + Tk(x')ldko(x - x') 

- [(i/2L)Foa(x)ir(x'),8'Yaeqir(x')o\x - x') + x +-+ x'] 

+ additional terms. 

a To be presented as a. part of the Ph.D. thesis (Physics 
Department, Harvard University). 
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in the unmodified axial gauge. TO and Tk are, re­
spectively, the energy and momentum densities of 
the electromagnetic together with the matter fields. 
The extra terms in the latter case make it im­
possible to have a Lorentz-invariant theory in a 
finite volume.4 

(2) The gauge arbitrariness mentioned by Sch­
wingerl is eliminated. That is, if Aa(x) = 0 were the 
only gauge condition, we would have the freedom 
of making any arbitrary gauge transformation 
A(Xl' X 2 , xo), independent of Xa, and the gauge con­
dition would still be maintained, i.e., 

Aa(x) --t Aa(x) + aaA(Xl' x2 , xo) = O. 

However, if we accept (13), under such a gauge 
transformation, 

ka = 0; 

or 

(14) 

The only gauge arbitrariness now is A(Xl' X2, xo), 
which is a solution of (14). Just as in the con­
ventional radiation gauge, we choose as the standard 
gauge A(k), which makes 

ka = 0; A~(k) = o. 
, J. Schwinger, Phys. Rev. 127, 324 (1962). 

In this way, the two-dimensional gauge freedom is 
completely eliminated. 

(3) It will be shown in another contexe that 
the spectral density of the one-photon Green's func­
tion, (vac \A,,(k) Ai -k)\ vac) (no summation), 
is nonnegative for ka rf O. (13) is naturally the 
logical choice, among all the gauges we know of, 
to continue this property to ka = O. To phrase it 
differently, the vectors in the Hilbert space, sup­
plemented with conditions (12) and (13), have finite 
positive-definite norm and thus allow for probability 
interpretation. 

In closing, it may be remarked that here is an 
example, which stresses once again that the electro­
magnetic field has two and only two independent 
dynamical degrees of freedom. Any violation of this 
aspect will lead to difficulty in formulating a con­
sistent theory. 

The results will be used in a separate note2
•
6 

to give a proof of the connection between spin and 
statistics with an electromagnetic field. 
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6 Y. P. Yao, J. Math Phys. 5,1322 (1964) (following paper) 
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Because of the impossibility of simultaneously satisfying the requirements of manifest Lorentz 
covariance and positive-definite (finite) norm in the Hilbert space, no simple proof of the connection 
between spin and statistics with an electromagnetic field has been given. This note is to point out that 
it is indeed not necessary to have manifest Lorentz covariance in the full 3 + 1 space to show such a 
connection. Using the axial gauge Aa = 0, we have succeeded in constructing a simple straightforward 
proof. 

INTRODUCTION 

I N the proofs of the connection between spin and 
statistics, it is generally assumed thae,2 

(1) There is a unique invariant vacuum, the 
lowest energy state. 

(2) The spectral density is semipositive-definite, 
so that probability interpretation exists in the 
theory. 

(3) The theory is manifestly Lorentz covariant. 

These assumptions are not entirely met by the 
electromagnetic field; we have the annoying situa­
tion that, in any manifestly Lorentz-covariant 
gauges, (2) is violated; while, in the radiation guage, 
(2) is restored at the expense of (3). The relationship 
between spin and statistics is known to hold, how­
ever. It is therefore urgent to re-examine whether 
all these three assumptions are necessary to con­
struct a proof. 

In the axial gauge, As = 0/.4 Assumption (3) is 
given up. We shall use this fact to show that (3) is 
actually not needed to show the connection between 
spin and statistics. 

The proof given here may be considered as an 
extension of the work of Brown and Schwinger. 

There has been a paper by D. Boulware,5 which 
deals with the same problem we are considering here. 
However, he had to work in both the radiation guage 
and the Lorentz gauge in order to make use of all 

* John Parker Fellow. Present address: Institute for Ad­
vanced Study, Princeton, New Jersey. 

1 N. Burgoyne, Nuovo Cimento 8,607, (1958); G. Luders 
and B. Zumino, Phys. Rev. 110, 1450 (1958). 

2 L. Brown and J. Schwinger, Progr. Theoret. Phys., 
(Kyoto) 26, 917 (1961). This paper will be referred to as 1. It 
is suggested that the readers go through this paper first, 
since we shall follow the notations and the basic concepts 
presented there. 

a Y. P. Yao, J. Math. Phys. 5,1319 (1964) (previous paper). 
4 Y. P. Yao, Ph. D. thesis (1964), Department of Physics, 

Harvard University. Consistency, Lorentz invariance, etc. 
of quantization in a finite volume have been verified here. 

6 D. Boulware, J. Math. Phys. 3, 50 (1962). 

the three requirements stated above. Weare of the 
opinion that our proof is more straightforward and 
can be easily generalized. 

SPIN AND STATISTICS 

Let x be a Hermitian field of finite multiplicity. In 
the proof of the connection between spin and statis­
tics by Brown and Schwinger, it is essential that 
the spectral density m(p, l) (see later for definition) 
depends on p only algebraically. For this reason, 
their proof cannot be carried through to include 
electrodynamics in the radiation gauge, 

V·A = O. 

Similarly, in the axial gauge, As = 0, we fail to 
establish that m(p, K2), depends on Pa only algebraic­
ally, as the second-order mass operator indicates.4 

It is then necessary to modify the proof given in I 
somewhat. 

We use the notations 

-~ (po 1 2 0) P = ,p ,p, , 

and 

i.e., the Lorentz metric is (-1, 1, 1, 1). 
Using the conditions that the vacuum is invariant 

under translations in space and time and that only 
positive frequency timelike energy momentum 
vectors Ip> can exist in the physical quantum vector 
space, we write 

{x(x)x(x') = (xeiP(Z-~')x) 

= 1'" di l:.... ( .L: + .L: e''''(z,-",,}) 
o 2L ..... 0 ... -0 

x J (:~2 eifJ.(~-n1]+(p) O(p2 + l)m(p, K2), (1) 

where P are the translation (energy-momentum) 
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operators, and 

{
1 pO > 0, 

'I1+(P) = '11-( -p) = ° 
pO < 0. 

The Hermitian spectral density 

L(5w) = 1 + !i5w~' S~, + 5CirO~,(A), 
O~,(A) = 0, p., " = 0, 1,2, 

where O~.(A) is a function of the gauge transforma­
tion A, which must accompany the Lorentz trans­
formation Z to maintain the gauge condition in the 

m(p, i) = m*T(p, l) = (211l(2L)(xM(P)x) (2) new coordinate system. For example, in electro­
dynamics, expanding 

must be a positive matrix over some region of the 
momentum space; at least over po ;?: 0, in order to 
have probability interpretation in the theory. 2L is 
the extension along the third direction in which we 
enclose the system and M (p) is a nonnegative 
Hermitian projection operator. (With proper nor­
malization, it is Ip> <pl.) 

The complex conjugate of (1) is 

(x(x')x(x) = (x(x)x(x'»* 

= 1'" dll- (2: + 2: e''''(%'-%''» 
o 2L ".~O ".-0 

x J (:~2 eiP'(~-~'>1J_(P) 5(p2 + l)m*(-p, i). (3) 

Using 

'I1±(P) = !(1 ± E(P», 

A(x) = J (:~4 ei "'% A(p) 

and 

we have4 

and 

bI!(p) = (1 + !i5w~.O"~')'V(P) 

+ ieq J (::)4 }..(p - k)'V(k), (6) 

where 

}..(P) = ;~ 5w3
< A.(P) 

we combine (1) and (3) to yield the commutator []- d 
or the anticommutator [ ]+ an 

([x(x), x(x')]±) = ( 2: + E l- e'''(%'-'''''» 
P.-o P.~o 2L 

x J (:~2 dK2 eip,(~-~'> 5(p2 + K2)Um(p, i) 

± m*(-p, i) + E(p)(m(p, l) ± m*(-p, l))]. (4) 

We shall examine the structure of m(p, l). 
To each homogeneous, proper, orthochronous 

Lorentz transformation 

x' = lx, det l = 1, 

O"~. = i--/'y', p. ~ ". 

Equation (6) can be integrated to a finite rotation. 
Let us consider a specific case when we make a rota­
tion in the 1-3 plane through an angle a. It can be 
shown that6 

.J°(x') = A O(x) + a°}.., 

.JI(X') = (A I (x) + al}..) cos a + (A sex) + a3
}..) sin a, 

.J2(X') = A 2 (x) + a2}.., 

A3(X') = -(AI(x) + a I}..) sin a + (A 3(x) + a3
}..) cos a, 

there correspond a unitary operator U(Z) and a finite and 
real matrix L(l), such that 

(7) 
x(x') = L(l)x(x) 

and 

x(x) = U-I (l)x(x) U(l). 

For an infinitesimal transformation 

l; = 5; + 5w;, 

we have 

and 

where the accompanying gauge transformation is 

(5) and 

Xl' = Xl cos a + x 3 sin a, 

;rl' = _Xl sin a + x3 COS a. 

(8) 

(We have tacitly avoided mentioning the complica­

• D. Boulware, Ph.D. thesis (1962), Department of Physics, 
Harvard University. 
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tion caused by Pa = O. This does not, however, cause 
any limitation on the following prooC) 

The differential characterization of (5) is (See I, 
p.920) 

~ (PI' ~ - P. ~)m(P, K2) + S".m(p, K2) 
~ ap' ap" 

+ m(p, l)S~. = 0, p, II = 0, 1,2, (9) 

since no gauge transformation is needed if we do not 
disturb the third axis. After we introduce P4 = ipo 
and Su = iSOk, as far as the dependence on p is 
concerned, (9) is a statement of the rotational in­
variance of a system in the 0-1-2 Euclidean sub­
space. m(p, i) is therefore a sum of products of some 
arbitrary functions of i and P3, finite numerical 
matrices, and three-dimensional spherical harmonics. 
These spherical functions are homogeneous algebraic 
functions of p, of degrees no greater than 2S, S being 
the highest spin value associated with x, and irreduci­
ble with respect to the contraction _p2 = i. 

When a = 11', (8) gives X = O. This result is very 
important, because it means that no gauge trans­
formation is needed if we rotate the coordinate axes 
in the 1-3 plane by 11',

8 (although this result is proved 
for spin-t electrodynamics, we believe it to be true in 
all other cases.) If, after this operation, we further 
rotate the coordinate system in the 3-4 plane by 11', 

the combined effect is the total reflection x" ~ -x" 
and the corresponding matrix L(l) is9 

Using the properties 

R!, = 1, 

iSl3 being real, and iS24 = - S02 being imaginary, we 
have 

R~, = (_1)2SR". 

This last relation and (5) lead to 

m(-p, i) = R.,m(p, K2)R;, = (-1)28R.,m(p, i)R~,T. 

On the other hand, m(p, K2) ~ 0 for pO ~ 0, and 
therefore we have analytically continued m(p, i) 
to negative value of pO, supplying the property 

pO > 0 : (_1)28 m(P, i) ~ o. (10) 

7 As we shall see later, if the system is enclosed in a 
finite volume, we shall avoid using the spectral density 
around PI = O. When the volume becomes infinite, then 
points with pa = 0 have measure zero and thus should not 
complicate matters. 

8 We believe that this result is also true, if we have a 
guage condition which distinguishes two of the spatial axes 
from the other one (but does not involve the time component.) 

g J. Schwinger, Lecture Notes, Summer Institute in Theo­
retical Physics, Brandeis University (1959). 

We return to (4). We have just shown that m(p, i) 
depends on p algebraically. For this reason, it is 
legitimate to write (4) as [in other words, we replace 
p by Iii a to emphasize the algebraic structure] 

([x(X), x(x' )]±) 

= 1'" d 2 ~ ~ ' ... (x,-z,')! [ (! -a 2) 
K 2L L.J e 2 m . ,P3, K ° ..... 0 ~ 

± m*(~ a, -P3, i) ] J (;~2 e,ji·(:e-:e') o(p' + i) 

+ 1'" d 2 ~ ~ ''''(''->'')! [ (! -a 2) 
K 2L L.J e 2 m . ,P3, K ° " ... 0 ~ 

=F m*(~ a, -P3, i) ] J (~2 e,ji'(:e-:e') O(p2 + K2)E(P) 

+ ~ J -.1L d 2 eiji.(:e-:e') ~(P2 + 2):![ (p 2) 2L (271), K v K 2 m ,K 

± m*( -p, i) + E(p)(m(p, K2) =F m*( -p, i»]", = o. 
(11) 

The function, designated as 

.6.(i - i', i + p~) = J (;~2 e,ji·(:e-:e'l O(p2 + i)E(P) 

is odd with respect to Xo - x~, because of E(p), i.e., 

.6.(-(xo - x~), X - x', i) = -.6.(x - x', i). 

This results in 

.6.(i - i', i) = 0 when :l = XO / • 

But .6.(i - x', i) is an invariant function in the 
0-1-2 subspace; the invariant statement is then 

.6.(x - x', i) = 0, (x - i')2 > o. 
It is at this kind of spatial separation from each 

other, namely, 

(x - x')' ~ (x - x'? = (Xl - xf? 

+ (X2 - X~)2 - (xo - X~)2 > a2, 

that we assign the two X fields in what follows. a is 
some arbitrary but sufficiently large real number. 

The vanishing of the commutator or the anti­
commutator for spatial separations is now assumed. 
Because X3 - x~ can run over all values, the unique­
ness of Fourier expansion ensures that each indi­
vidual component of the Fourier transform in (11) 
with respect to Pa is null. Thus, when Pa ~ 0, 

1'" d 2[ (! - 2) *(! - 2)J ° K mia, Pa, K ± mia, -P3, K 

x J (;~2 e,ji·(:e-n O(p2 + i) = 0, (x - x,? > a2
• 

(12) 
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We have the representation, for (x - X,)2 > a2 

AI(X - xf , ,,2 + p~) == J (;~2e;i>'(!-~') ~(P2 + ,(2) 

= ~ i'" ~ exp ( - Xx2 
- ,,2 t p~), 

and (12) becomes 

i~ dl[ m(~ 8, Pa, l) ± m*(~ 8, -PSI i) J 
X 10> ~I exp (_XX2 - i :x p;) = o. (13) 

The proof from here on duplicates that of I. 
Because of what we said about the structure of 
m[(1/i)8, Pa, ,,2] after Eq. (9) and because 
AI(x - Xl, l + p~) is a function of (x - X/)2 only, 
we expand 

[ (.! -; 2) *(1 - 2)J m iV, Pa, " ± m i 0, -pa," 

28 

X AI(x - x', i + P:) = I: m,:(ps, i)Y,(x - X') 
'-I 

X ( a )' AI(- -f 2 + 2) o(x _ X')2 X - X , " Pa (14) 

into harmonic series where Y I (x - x') are three­
dimensional spherical harmonics, and m/±(Pa, l) are 
the associated expansion coefficients, being scalar 
functions in Pa and l. 

Because (a/a(x - X')2)' Al (x - x', l + P:) :F 0, 
we must have for each l = 0, 28 

[' dX e-}.!· itO di 

X exp [-(il + pi)/4X](Xri m".(ps, l) = 0. 

We restrict ourselves to the class of functions 
mU:(p3, i) which can grow at most algebraically 
with ,,2.10 We now invoke Laplace's lemma,2 which 
states that if 

1'" (dx) e-'''f(x) = 0 

for t(x) such that 

(t ~ 1) 

[' (dx) e-z It(x)1 2 < co, 

.10 This co~dition can always be satisfied, if we have some 
finite equal-tIme commutation relations of the x [i. e., finite 
coefficients multiplied by 8(x - x')], because then we can 
show that there are finite sum rules (integrals with respect to 
"I) that m{p, ,(2) have to obey. See, for instance, the Appendix. 

then 

f(x) = O. 

We apply this lemma first with respect to the X 
transform and then the i transform. We come up 
with the conclusion 

l = 0,28. 

Therefore it follows from (4) that the vanishing 
of the commutator (-) or the anticommutator (+) 
for sufficient spacelike separation requires 

m(p, ,(2) =F m*( -p, ,(2) = 0, respectively. 

Comparing this with (2) and (4) we see that 
2' ' m(p, " ) == 0, If we assume the wrong connection be-

tween spin and statistics. This cannot be so for 
m(p, i) == 0 implies x == O. Thus, we must de~and 
the commutator condition (Bose-Einstein statistics) 
to go with integral spin fields, and the anticom­
mutator conditions (Fermi-Dirac statistics) to go 
with half-integral spin fields. 

We also see that the same proof can be carried out 
if we have a theory which is manifestly Lorentz~ 
covariant in a plane containing the 0 axis and one of 
the spatial axes. 
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APPENDIX I' 

The one-photon Green's function has the spectral 
representation 

(Ap(x)A.(x'» = J (~~3 2i f fr. di eip.(z-z·) 

X '1+(P) ~(P2 + i)Ap,(P), 

where 

pa = 0 : A/ .. (P) 

= (g _ PPP. - (n·p)(npp. + n,pp»)A (2) 
p. (p + n(n.pW I" , 

n = (1, 0, 0, 0) a timelike unit vector; 

Pa :F 0 : ..1.p,(P) 

= (gil. + ~ (m.p ~ ie/ + (m.p 1+ ie)Z) 

_ m"p. + mvPe ( 1 + 1 ))..1. 2 

2 (m·p - if) (m·p + if) 2(" ) 
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(lim E ~ 0). m = (0,0,0, 1) a spacelike unit vector, 
with 

AI(i) ~ 0, A 2(i) ~ 0, 

fa'" A1(i) di 1'" A 2(i) di = 1; 

it is apparent that 

(semipositive-definite) 
(no sum). 

The one-electron Green's function has the spectral 
representation 

JOURNAL OF MATHEMATICAL PHYSICS 

(if;(x)if;(x'» = -J d3P21"" di.l {E e''''(z-z') 

(2'11-) a 2L ". 

X T/+(P) O(p2 + i)i,B[(-ipo + "./PI + -lp2) 

X A(P~, «2) + 'lp3B(P~, i) + mC(p~, «2)]. 

We have the properties 

(semipositive-definite) 

and 

1. 
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The Wave Equation and the Green's Dyadic for Bounded Magnetoplasmas 

Y. J. SETO AND ARWIN A. DOUGAL 

Department of Electrical Engineering, The University of Texas, Austin, Texas 
(Received 4 February 1964; final manuscript received 24 April 1964) 

In studies of electromagnetic wave propagation and radiation in magnetoplasmas, the wave equation 
takes the form of a dyadic-vector Helmholtz equation. The investigation here shows that the dyadic­
vector Helmholtz equation is solvable by the separation method in four cylindrical coordinate systems. 
Solutions in the form of complete sets of eigenfunctions are possible when boundary surfaces are 
present. For problems involving current sources in the plasma, the Green's dyadics for finite or 
semifinite domains can be constructed from the complete sets of eigenfunctions which are solutions to 
the homogeneous equation. The Green's dyadic for infinite domain is also shown to be obtained from 
that for a semifinite domain through a limiting process. 

INTRODUCTION 

T HE presence of a static magnetic field in a 
plasma region results in an effective electric 

conductivity which is of dyadic form. Assuming 
monochromatic waves, the equation describing the 
waves, generated by a source, J., in such an aniso­
tropic medium may be written as 

VxVxE - k·E = J •. (1) 

Written in matrix form, the dyadic k is 

function for infinite domain have been discussed 
by Bunkin I and subsequently extended by Chow2 

and Brandstater.3 However, the solutions of Eq. (1) 
for a bounded region have proved to be more 
difficult to obtain. The studies dealt with here 
reveal that, in order to solve for a finite-domain or 
semifinite-domain Green's function, a better under­
standing of the free wave equation, J. = 0 in Eq. (1), 
is needed, and that the Green's function may be 
constructed from the solutions of the homogeneous 
equation. 

THE HOMOGENEOUS EQUATION 

[ 

kJ. kT 0 J 
k = -kr kJ. 0 . (2) The homogeneous equation describing free wave 

° 0 ku 

Assuming spatial homogeneity, the parameters kJ., 
kT' and ku are constants with respect to time and 
space coordinates. 

Solutions for Eq. (1) in terms of auxiliary Green's 

propagation is 

I F. V. Bunkin, Zh. Eksperim. i Teor. Fiz. 32, 338 (1957) 
[English trans!.: Soviet Phys.-JETP 5, 277 (1957)]. 

2 Y. Chow, Trans. IRE trans. Antennas Propagation 10, 
464 (1962). 

8 J. J. Brandstater, An Introduction to Waves, RaY8, and 
Radiation in Plasma (McGraw-Hill Book Company, Inc., 
New York, 1963) Chap. 9. 
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VxVxE - k·E = O. (3) 

Equation (3) is seen to resemble a vector Helmholtz 
equation except that k is a dyadic. It is well known 
that the scalar Helmholtz equation is separable in 
eleven coordinate systems, and that the vector 
Helmholtz equation is separable in only six coor­
dinate systems.4 Despite the fact that the dyadic­
vector Helmholtz equation has been frequently en­
countered in connection with the studies of crystal 
materials and plasma fields, and that its solutions 
have been obtained and used extensively for prob­
lems involving boundaries in the rectangular coor­
dinate systems and the circular cylindrical coordinate 
systems,6,6.7 additional investigation into the separa­
bility of the dyadic-vector Helmholtz equation is 
desirable. The separability of Eq. (3) will be studied 
here, since by determining the coordinate systems 
in which this equation is separable one not only 
gains the knowledge of exactly in what coordinate 
systems the equation is solvable by a separation 
method, but one also hopefully attempts solutions 
in the form of eigenfunctions when boundaries are 
involved. The eigenfunction solutions will be of 
great help in constructing the finite-domain or 
semifinite-domain Green's dyadics. 

In the application of boundary-value problems, 
separation into the form that conveniences the 
fitting of boundary surfaces is most desirable. Hence, 
it is advisable to separate this dyadic-vector Helm­
holtz equation in terms of longitudinal L, and 
transverse M and N vector components. 

The first term in Eq. (3) is a vector operating 
term, V x V x E. A review of the separability of a 
vector Helmholtz equation shows that the coordinate 
system in which this vector operating term facilitates 
separation must be a coordinate system in which 
one of the scale factors is unity, and that the ratio 
of the remaining two scale factors must be independ­
ent of the coordinate corresponding to the unity 
scale factor. The six coordinate systems which meet 
these requirements are the spherical, the conical, 
and the four cylindrical coordinate systems. 

Pertaining to magnetoactive plasma, Eq. (2) 
implies that the static magnetic field is in the direc­
tion parallel or antiparallel to the coordinate cor-

4 P. M. Morse and H. Feshbach, Methods of Theoretical 
Physics (McGraw-Hill Book Company, Inc., New York, 
1953) Vol. II, Chap. 13. 

• W. P. Allis, S. J. Buchsbaum, and A. Bers, Waves in 
Anisotropic Plasmas (Technology Press, Cambridge, Massa­
chusetts, 1963) Part II. 

6 H. Suhl and L. R. Walker, Bell System Tech. J. 33, 579, 
939, 1133 (1954). 

7 A. A. Th.M. van Trier, Appl. Sci. Res. (Netherlands) 
B3, 305 (1953). 

responding to the unity scale factor. Without losing 
generality, this coordinate is denoted ~3, and its 
unit vector, aa. A close examination shows that only 
four out of the six coordinate systems are physically 
realizable for such alignment of the static magnetic 
field; namely, the four cylindrical coordinate systems 
including the rectangular, the circular cylindrical, 
the elliptical cylindrical, and the parabolic cylindrical 
coordinate systems. In each system, ~s corresponds 
to the z axis. 

I t may first seem to be pessimistic that the number 
of permissible coordinate systems has been reduced 
to only four from eleven right at the onset. Fortu­
nately, however, it turns out that no other restriction 
will be imposed that further reduces the number 
of permissible coordinate systems. 

In attempting the solution of Eq. (3), the diffi­
culty lies in the fact that each term in the equation 
is a purely transverse vector, while due to the dyadic 
k, the vector field E, in general, is not entirely 
transverse. Since it is desirable to separate the equa­
tion in terms of transverse and longitudinal compo­
nents, E must be expressed in terms of all three 
vector components L, M, and N, i.e., 

E = L+M + N, 

L = -V.L<I> - Vu<l>, 

M = V.Lwxaa, 

N = V.L(Vi·aaX) - ('V':X)aa; 

(4) 

where <1>, 'l', and X are three scalar functions to be 
determined. The subscript .L indicates the compo­
nents of operator or vector which are perpendicular 
to as, whereas II indicates parallel to aa. 

Expanding k·E into vector form, Eq. (3) may 
be broken into two equations, one contains the 
.L vectors, the other contains the II vectors. It is 
also recognized that Eq. (3) implies 

"\l·(k·E) = 0, (5) 

which yields a third equation. After some manipula­
tion, the three basic equations become 

\7:('V'~'l') + 'V'~('V':w) + kT V n"a3('V':X) 

- kT'V':<I>+k.L('V':'l') = 0, (6) 

\,7:('V':X) + \,7~('V':X) + ku \,7:X 

kuVu·aa<l> = 0, (7) 

kT(\,7~'l') + (ku - kJ.)V u ·a3(\,7~X) 

+ kJ. \7~ <I> + ku 'V'~<I> = O. (8) 

Close examination of Eqs. (6)-(8) shows that 
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solutions may be obtained if the three scalar func­
tions each satisfies 

or 

'l~(iI>, qr, X) + "~(iI>, qr, X) = ° (lOa) 

and 

'lHiI>, qr, X) + k~(iI>, qr, X) = 0, (lOb) 

with 

,,~ = T! - k!, (lOc) 

where k~ is the separation constant for separation 
of ~3' T~ in Eqs. (9) or (lOc) must satisfy an eighth­
order determinant equation 

(T~-kJ.) -kT kT 

° (T!-k!)(T!-ku) -kuk! 

kT(T!-k~) (ku-kJ.)(T!-k!) kJ.(T~-k!)+kuk! 

= 0. (11) 

The order of Eq. (11) appears to be too high to be 
readily solved at first, but it turns out that the 
resulting secular equation is only of fourth order 
in T m, since the other four roots, T ~ = k~, and 
T ~ = 0, are trivial and may be discarded. The 
secular equation yield by Eq. (11) is 

(T! - k! - ku)[k~ - k.L(T~ - k.L)] 

- kuk!(T! - kJ = 0. (12) 

Equation (12) may be readily solved for T ~ in 
terms of k~, or for k~ in terms of T~, depending 
upon the manner of the boundaries set up in the 
problem. Let the solutions of the scalar functions be 

qr = Aqr .L(~l' ~2' "m)'lFH(~3' km), (13) 

X = BXJ.(~l' ~2' "m)XI(~3' km), (14) 

iI> = Cil>.L(~l' ~2' "",)iI>U(~3' km). (15) 

If the boundaries are parallel to the ~a = constant 
surfaces, qra, XI, and il>u are sets of eigenfunctions 
and k", are the eigenvalues with index m; then "m, 
obtained from Eqs. (12) and (lOc) , will describe 
the dispersion relation for propagation in the (~1' ~2) 
space. Conversely, if the boundary surfaces are 
perpendicular to ~3 = constant surfaces, qr.L, X.L, 
and <1>.1 will consist of sets of eigenfunctions with 
"m consisting of the eigenvalues. qru, Xu, and <1>u 
describe the propagation in aa direction with km 

being the parameter describing the dispersion rela­
tion. In either case there will be another eigenvalue 

with index n, resulting from the separation of Eq. 
(lOb), which is not apparent in Eqs. (13)-(15). 
Of course, when the boundary is a completely 
self-enclosed one, there are three sets of eigenvalues 
with indices m, n, and l. The solutions qr, X, and <1> 
are not entirely independent. By substitution of 
Eqs. (13)-(15) into Eqs. (6)-(8), it is possible to 
obtain a functional relation between the constants 
A, B, and C, thus reducing the number of arbitrary 
constants to one. 

Without restricting the generality of the two 
succeeding sections on the inhomogeneous equation 
and the Green's function, and on the infinite-domain 
Green's dyadic, a readily understandable illustration 
is that of a plasma region bounded by two parallel, 
infinitely large, conducting plates of finite separation 
d, with a static magnetic field imposed upon the 
plasma in the direction normal to the boundary 
plates. The solution for outgoing waves can be 
found in a circular cylindrical coordinate system. 
Assuming the origin of the coordinate system is 
located midway between the plates 

(16) 
m.n 

(17) 
m.n 

(18) 
m.n 

with two sets of eigenvalues, i.e., 

n = 0, ±1, ±2, ... , 

k", = m7r/d; m = 0, 1,2, .. , (19) 

As stated above, functional relations between A mn, 
B,nr., and emn may be obtained by substituting 
Eqs. (16)-(18) into Eqs. (6)-(8). Since cos k",z or 
sin k",z when summed on m constitutes a complete 
set of eigenfunctions, this complete set is a complete 
solution of Eq. (lOb). Also, the functions ein8 when 
summed on n yield a complete set of eigenfunctions 
which satisfies an equation resulting from separation 
of () from Eq. (lOa). Therefore, by virtue of the 
completeness theorem for several variables,8 the 
functions qr, X, and <1> as shown in Eqs. (16)-(18) 
are complete sets which satisfy Eq. (9). Conse­
quently, the wave field E, obtained from Eq. (4), 
having three orthogonal components, namely, 

V J. qr X as, V l.eVU ·aaX - <1» and aaC'v 1x + V u'aa<1», 

with each component consisting of complete sets, 

8 See for example, R. Courant, and D. Hilbert, Methods of 
Mathematical Physics (Interscience Publishers, Inc., New 
York, 1953), Vol. I, p. 56. 
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must by itself be complete. Hence, E so obtained 
is a complete solution to Eq. (3). In addition, it can 
also be shown that for a physically realizable prob­
lem, the boundary conditions require that either 
the tangential component of electric field or the 
tangential component of the magnetic field vanishes 
at the boundary; from this, the solution obtained 
by Eq. (4) can be proved to be unique.9 

INHOMOGENEOUS EQUATION AND THE 
GREEN'S FUNCTION 

When a source J.(r) is presented in the bounded 
region, it can be shown that Eq. (1) is solvable 
in terms of an integral representation 

E(r) = 1.. G(r I ro)' I. (ro) dvo, (20) 

where the kernel G(r I ro) is the usual Green's 
dyadic function except that instead of satisfying 
Eq. (1) with a dyadic impulse source, it satisfies 
the following: 

V xV xG - k·G = IO(r - ro), (21) 

where I is the idemfactor and k is the conjugate of k. 
The use of the conjugate of k in Eq. (21) is necessary 
if it is desired to include the cases where k is not 
Hermitian, (see Appendix). In addition to satisfying 
Eq. (21), the Green's function must also satisfy 
the same boundary condition that the field satisfies. 

The derivation of a Green's function to be dis­
cussed here depends upon whether there are bound­
ary surfaces parallel to the ~a = const surface. For 
brevity, only the case with boundary surface 
parallel to the ~a = const surface will be derived 
here. It is assured that the Green's dyadic for 
the case of no boundary surface parallel to ~a = 
const surface may also be derived with the same 
technique, except for some minor modifications. 

In view of the form of the solutions to the homo­
geneous equation, and in view of the fact that the 
three scalar functions are not independent functions, 
it is proposed that the Green's dyadic takes the form 

(22) 

where 

"'." 

"'." 
X G", .. (~~, ~~, ~~), (24) 

9 See for example, J. A. Stratton, Electromagnetic Theory 
(McGraw-Hill Book Company, Inc., New York, 1941) pp. 
486-488. 

"'," 
and where Fm .. , G",n, and Hmn are functions of source 
coordinates only. 

'Pm .. is a two-variable function of variables ~l and ~2' 
satisfying Eq. (lOa). The ~a dependent functions 
!m and y", are the two independent solutions of 
Eq. (lOb); their relation is dictated by whether there 
is a closed or open boundary in ~a. For the case 
of closed boundary in ~a, the relation is 

(26) 

The choice of upper or lower sign in Eq. (26) depends 
on the type of boundary condition and the choice 
of coordinate origin in the problem. To be general, 
both signs will be kept throughout this derivation. 
Finally, the index n in Eqs. (23)-(25) may be a 
single index or a double index, depending upon 
whether the boundary perpendicular to ~a is open 
or closed. 

The vectors M, N, and L are not necessarily 
orthogonal in space, but V l.'Pm .. X aa, V l.'Pmn, and 
aa are three orthogonal vectors. If a unit vector b, 
and a two-variable-dependent function Pm"(~l' ~2) 
are defined such that 

V l.'Pm"(~l' ~2) = P"'''(~l' ~2)b, (27) 

then the unit vectors b, b x aa, and aa are mutually 
orthogonal in space. Multiplication of these unit 
vectors b, b x aa, and aa in turn into Eq. (20) yields 
a set of three mutually orthogonal equations: 

L {_(\72 + kl.)(P", .. !m)Fm .. - kT(Pm .. f",)(k",G", .. ) 
"'." 

+ kT(p", .. f",)Hm .. } = b xaa5(r - ro), (28) 

L {kT(p .... f",)F", .. - (\72 + kl.)(p", .. f",)(k",G", .. ) 
"'." 

+ kl.(Pm .. fm)H", .. } = b5(r - ro), (29) 

L {(\72 + ka)(\7
2 + k!)('P", .. y",)(k",G", .. ) ... , .. 

- kllk!('Pm .. Ym)Hm .. } = kmaa5(r - ro). (30) 

In Eqs. (28)-(30), the relation given by Eqs. (22)­
(26) has been substituted. The operator \72 is a 
three-dimensional operator operating on the observer 
coordinate functions only, i.e., (Pm .. ! .. ) or ('P",nY",). 
When operation on the source coordinate is needed, 
the operators will be distinguished by a super­
script o. 

In order to express the ~~ dependent functions 
explicitly, and to express the source coordinate 
functions in component form, F m", G", .. , and Hmn 
may be assumed 
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F ..... = F~ .. (~~, Wf~(~~)b xaa + F~n(~~, ~~)f~(~~)b 
+ F~n(~~, ~~)f~(maa, (31a) 

G m .. = G~n(~~' ~~)g~(~~)b x aa + G~n(~~, ~~)g~(~~)b 
+ G~n(~~, ~~)g~(~~)aa, (31b) 

Hmn = H~.(~, ~~)f)~(~~)b xaa + H~n(~~, Wf)~(~~)b 
+ H!n(~~, Wf)~(~~)aa. (31c) 

After some vector manipulations, Eqs. (28)-(30) are 
broken into a set of nine sixth-order equations 

m." 

.... ft 

x (P",,,lm) ('P ... ng ... ) oCr - ro), 

:E [fl(p ..... I ... )2('Pmngm)F;;;nf~ 
".n 

..... 
x (Pm..tm)('P",ngm)o(r - ro), 

:E IDI(p .. "I .. /('P ... "g .. )F!"f! 
m." 

.... n 

"." 

(32) 

(33) 

(34) 

functions immediately to its right, 

[fl = {k.J.T!(T! - 2T!)(V
2 

- T!), if 

k.J.T!(T! - IT!)(\12 - T!), if 

T~ -IT!j 

T! - 2T!j 
(41) 

where lT~ and 2T~ are the two nontrivial roots 
of Eq. (12). In view of Eq. (9), all operators \12 

to the right of the equality sign in Eqs. (32)-(40) 
are replaced by (-T~). Substitute Eq. (41) into 
Eqs. (32)-(40) and drop out the functions common 
to both sides of the equality sign. Multiply both 
sides by I! or g!, whichever one is appropriate. 
Then integrate over the entire bounded ~a space, 
utilizing the orthogonal properties of the eigen­
functions 1m and gm, 

J Iml! dVh = A!, 
(42) 

J gmg! dv •. = A!, 

where A~ is the normalization factor. The asterisk (*) 
indicates the complex conjugate. The integration 
yields distinct solutions for the ~~-dependent func­
tions, 

f~(~~) = f)~(~~) = g~(m = (1/ A!)g!(W, 

f~(~~) = f~(W = g~(W = g;;;(~~) 
(43) 

(35) = f)~(W = f);;;(~~) = (1/ A!)/!(~~). 
m.n 

"." 

m ... 

".n 

m.n 

m.n 

m.n 

"." "'." 
X (\1 2 + k.J.)(\12 + k!)('Pmngm)O(r - ro), 

L: [fl(P ..... f .. )('Pm .. g ... )H~nl)~ 
m." 

m •• 

(36) 

(39) 

where the operator [fl is an observer coordinate 
operator, it can be considered to be operating on 
anyone of the two or three observer coordinate 

Equation (42) together with Eq. (43) indicate that 
the functions Im(~3)f!(~~) and gm(~a)g!(~n are one­
dimensional scalar Green's function, both satisfying a 
one-dimensional equation: 

v~(lmf!, gmg!) + k!(fml!, gmg!) = O(~3 - ~~). (44) 

After integrating out the k and ~~-dependent 
functions, Eqs. (32)-(40) become convenient two­
dimensional simultaneous equations involving (~l' ~2) 
and (~~, m only. It may be demanded that 

{\1~ + K!} (Pmn\3'~ .. )(b x aa)(b x aa) 

= -K!(\1~ + K!) II'Pmn@~nll (b xaa)(b xaa), (45) 

and 

{\1~ + K!.}(Pmn\3'~ .. )bb 

= K!.(\1~ + K!.) II'Pm .. @~nll bb, (46) 

where the two double bars bracketing a function 
indicates only the scalar is being considered. 15m .. 
and @mn represent anyone of the (~~, ~~) functions 
corresponding to Pmn and 'Pmn, respectively. With 
Eqs. (45) and (46), all nine equations in Eqs. 
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(32)-(40) may be represented by one symbolic 
equation, 

I'V~ + T! - k!}gmn(~I' b I ~~, ~~) 
= (constant)o(~1 - ~~)O(~2 - ~~). (47) 

One thus has reduced the problem of solving the 
Green's dyadic to one of searching for an appr-o­
priate two-dimensional scalar Green's function. 
Exact solutions of Eq. (47) depend upon the coor­
dinate systems employed and the type of boundary 
perpendicular to ~a = const surfaces considered. 
In general, it can be written symbolically 

(constant) ( ) ~ (0 0) 
g",,, = 2 I{Jmnl tl' t2 I{Jmnl tl' t2 , 

11 

for closed boundary in 1.; (48) 

( constant) (t t) ~ (to to) 112 I{Jmn <;1, <;2 I{Jmn <;1, <;2 , 

for open boundary in 1.. 

In the case of a closed boundary in 1., cP ... nl = 1{J! .. 1 

is the complex conjugate of I{Jmnl; and l = A!A~, 
A! and A~ are the two normalization factors. In the 
case of an open boundary, I{Jmn and cP ... n are the two 
independent solutions of Eq. (lOa) and 112 is a 
constant involving the Wronskian of the two In­

dependent solutions. Let 

t", .. (tl, t2 I ~~, t~) = I{Jmnl(tl, t2)cPm .. l(t~, m, 
for closed boundary in 1.; (49) 

I{Jm .. (tl, t2)cPm .. (t:, t:), 
for open boundary in 1.. 

The complete Green's dyadic is found to be 

G(r I ro) 

{ 

2 k + kll k2 

1 "m - II k1. m 0 
L: ~ 2A2 2 C'V 1. xaa)(V 1. xaa) 

m,n,Z 1JmV m K. m 

T! - k1. ( 2 k )( )( 0) + k 2 Km - II V1. V1. 1.K", 

+ k1.~~ [k~ - (k1. - k!)(T! - k1.)](Vu)(Vn 

- ~: (K! :!. ku) [(V 1. X aa)(V~) + (V 1.)(V~ x aa)] 

- ~: [(V 1. X aa)(VIi) + (Vu)(V~ x aa)] 

+ T! ~ k1. [(V 1.) ("lit) + (Vu)(V~)]} 
X tm .. (tl' t2 It~, t~)fm(ta)f!(t~); 

where 
T! -+ IT!; 

T! -+ 2T!. 
Symbolically, Eq. (50) may be written as 

G = L: L: L: L: L: {Si.i(k!, K!)(2 i
) 

m ft, l i 

(50) 

(50a) 

X (2b)tm .. f",f!} , (51) 

where 2; are the space coordinate differential op­
erators, i.e., V 1. X aa, VII, and V 1.; and S;·i(k~, K~) 
are the algebraic functions shown in Eq. (50); the 
indices i and j run on the terms corresponding to 
the vectors aa, h, and h x aa. 

In the circular cylindrical coordinate system with 
open boundary in rand e, the solution for Eq. (47) is 

( I ) (constant) ; .. (6-6.) 
g", .. r1. ro1. = 2 e 

11 

X {J"(Kmro)H~2)(Kmr), r ~ ro; (52) 

H~2)(K",ro)Jn(Kmr), r S roo 

Identifying fm(h) with cos kmz and g",(ta) with 
sin k",z, in line with Eqs. (16)-(18), the Green's 
dyadic valid for the case of two parallel conducting 
plates is (for r ~ ro only) 

+ j "k~ - (k1. - k!)(T! - k1.) H(2)J . k . k 
4- L.. - k d n n sm ",Z sm mZoaaaa 

m,n 11m l. 

- 42. L: kT~K~ ~ :u) {(V 1.H~2) X aa)('V~Jn) cos k",z cos k",zo + (V 1.H~2»('V~Jn X aa) cos kmz cos k",zo} 
m.ft 11m J.Km 

+ 42. L: ~kkmd I(V 1.H~2) xaa)(J .. aa) cos kmz sin kmzo + (H~2)aa)(V~Jn xaa) sin kmz cos kmzo} 
m.n '11m 1-

- 42. L: k",(~! k ~ k1.) I (V 1.H~2»(Jnaa) cos kmz sin k ... zo + (H~2)aa)(V~Jn) sin k ... z cos k",zo}. 
"'." '1 ... 1. 

(53) 
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THE INFINITE-DOMAIN GREEN'S DYADIC 

The transition of finite- or semifinite-domain 
Green's dyadic to the infinite-domain Green's dyadic 
may be obtained through a limiting process. Since 
the infinite-domain Green's function has been de­
rived by a number of authors and employed exten­
sively,1.2.3 no attempt will be made here to derive 
the infinite-domain Green's dyadic into its final 
form. The main purpose here is to show that such 
transition is possible. 

As an example, take the Green's dyadic of the 
two-parallel-plates case given in Eq. (53). As the 
plates recede to infinity, i.e., d --? <Xl, the summation 
on m goes over to an integral. Written in the symbolic 
form of Eq. (51), the transformed infinite-domain 
Green's dyadic g(r / ro) is 

In Eq. (54) the order of integration and differentia­
tion operations has been interchanged and the sub­
script m has been dropped. Evidently, the Green's 
dyadic for infinite domain can be obtained through 
a set of auxiliary scalar functions, I" i, as represented 
by the integral in Eq. (54). In view of Eq. (52), 
Eq. (44), and the fact that ff* is an even function, 
after using the addition theorem to perform the 
summation on n, Ii. i may be written 

where 

z' = /z - zo/. 

It should be noted that the new coordinate system 
has its origin at the source point. This choice of a 
new origin may require subsequent transformation 
back to the original origin. 

An exact solution of Eq. (55) is tedious and is 
not easily attainable; however, an asymptotic solu-

where, the subscript 1 and 2 on T2 represents the 
choice of plus or minus sign in Eq. (60). For sim­
plicity, the subscripts on T2 are dropped, assuming 
that it is permissible to work with one wave at. 
a time. The integral for Ii. i becomes 

i.i 1 1 Si.i -RU«) 

I = (j4R sin <{!)l C [1rT(r) sin r]l e dr, (61) 

tion which is valid for waves at large distance from 
the source may be obtained through the method of 
steepest descent. 

Assuming that interest is in the accuracy of the 
solution only to the order of l/r1, the zero-order 
Hankel function may be expanded into its asymp­
totic form. Retaining only the first term, Eq. (55) 
then becomes 

(56) 

At this point, it would deem more convenient to 
change the coordinate system from that of circular 
cylindrical coordinates to that of spherical coor­
dinates (R, cp, a); where 

ri. = R sin cp, 

z' = R cos cpo 

Under the new coordinate system, Eq. (56) 
becomes 

. . e- i (7r/4) 1'" St.i 
I"'(R) =--

2 _," (1rKR sin cp)l 

X exp [-jR(K sin cp + k cos cp)] dk. (57) 

It is recalled that 

(58) 

T is therefore the total propagation factor. Now 
for the sake of convenience, instead of k, a new 
integration parameter, r, may be employed, such 
that 

K = Tsin r, (59) 
k = T cos r. 

The parameter r has the same significance as the 
angle which measures the wave normal if T is a 
constant; however, in the present case T is not a 
constant. In fact, combining Eq. (12), Eq. (59) and 
Eq. (58) yields an expression for T in terms of r, 

where 

U(r) = jT(r) cos (r - cp). (62) 

Examination of the exponent shows that the real 
part of U(r) approaches + <Xl as k approaches ± <Xl. 

The saddle point of the integration is determined by 

dU/dr = 0, (63) 
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which yields 

IT(To)/(djdT)T(T)]._ro = tan (To - tp). (64) 

The contour of integration, C, is then chosen such 
that the path goes through the saddle point, To, 
and that the imaginary part of U is constant. 
Following the method of steepest descent, the solu­
tion for Eq. (61) is therefore 

where 

1/(To) = {2T sin {(~~ - T) cos (T - tp) 

dT ]}i -2-Sin(T-tp) . 
dT '-To 

(66) 

The electric field intensity E in infinite domain may, 
therefore, be obtained from 

E = 1; f [(~')(~~) 28
(";) (~~R~(ro»)f]'J. dvo! (67) 

'" I. n To sm tp 

providing that all parameters, including the dif­
ferential operators are properly transformed to the 
correct observer and source coordinates in the 
spherical coordinate system. 

CONCLUSION 

The results of separability studies in this work 
indicate that the dyadic-vector Helmholtz equation 
is solvable by the separation technique in four 
cylindrical coordinate systems. It may be noted that 
the solutions obtained by the separation technique 
are uncoupled, i.e., it is possible to solve for one 
field of the waves without explicit knowledge of 
the other field. Such simplicity may be contrasted 
to the coupled field solution that often prevailed 
in the past. In the past, free wave solutions in a 
bounded anisotropic plasma often has been ob­
tained by direct manipulations of Maxwell's equa­
tions and the generalized Ohm's law. Such manipula­
tions often led to second order differential equations 
such that the fields are coupled, i.e., the electric 
field is solvable in terms of the magnetic field and 
vice versa. Except for some special cases, to un­
couple the fields, the order of the differential equa­
tions must be raised beyond two and thereby in­
creases the difficulty in obtaining solutions in simple 
form. 

The Green's dyadic constructed through sets of 
eigenfunctions for finite or semifinite domain prob­
lems is expressed in terms of differential operators 

which have the advantage of ease of operation over 
integral operators. 

The form of solutions for infinite domain problems 
as shown in Eq. (67) is not exactly of the same form 
obtained by Bunkin.1 The most noticeable difference 
lies in the manner of operation. Bunkin's solution 
requires two second-order differential operations, 
while Eq. (67) requires only two first-order differ­
ential operations. However, the result of Eq. (67) 
compares favorably with that obtained by Bunkin. 

APPENDIX A 

The inhomogeneous equation is 

VxVxE - k·E = J •. 
A Green's equation is assumed 

v xV xG - K·G = IB(r - ro). 

(AI) 

(A2) 

Multiply G from the right into Eq. (AI) and multiply 
E from the left into Eq. (A2), subtract and integrate 
over the entire space on the source coordinate 
yielding 

E(r) = J G· J. dvo 

+ J {E·V xV xG - (V xV xE)·G) dvo 

- J {E·K·G - k·E·Gj dvo. (A3) 

Using Green's theorem the second integral can be 
transformed into a surface integral. If the Green's 
dyadic satisfies the same boundary conditions the 
E field satisfies, the surface integral vanishes. 

The dyadics k and K in the third integral may 
be expressed in terms of their symmetrical compo­
nents (subscript 8) and antisymmetrical components 
(subscript a) 

k = k. + k .. , 

K = K. + KG' 

(A4) 

(A5) 

SUbstituting into the integral, assuming G being 
symmetric and reciprocal with respect to rand 
ro, it is found that 

E·K.,G - k.·E·G = 0, if K. = k.; 

and 

E-K.,-G - kG-E'G = 0, if KG = -k ... 

Thus, it is shown that for Eq. (20) to hold, the 
third integral must also vanish, or 

K = k. (A6) 
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APPENDIX B 

Equations (45) and (46) in essence demand that 
the Green's dyadic be symmetrical. They also imply 
a condition for the (~3' m functions such that the 
solution for Eq. (44) must be chosen to satisfy 

Vu V'K(fmf!, gmg!) = k~(fmf!, gmg!)a3aa. (B1) 

Equations (45) and (46) along with Eq. (Bl) imply 

V~ = -Vol, 

and 

Vi = -Vu· 

(B2) 

(B3) 

(B4) 

The symbolic form of the Green's dyadic, as is 
given in Eq. (51), cannot be symmetric unless the 
source coordinates operator ~~ and the observer 

coordinates operator ~j can be interchanged. Of 
course, Eqs. (B2) through (B4) are not the only 
possible conditions that may force the Green's dyadic 
to be symmetric. 

The Green's dyadic is symmetric only in the 
coordinate system for which the Green's dyadic 
is constructed. Using variational technique, a given 
Green's dyadic may be transformed to one that is 
valid for a problem of different boundary configura­
tion in a different coordinate system. But the sym­
metrical property of the original Green's dyadic is 
not necessarily retained in the transformation. This 
is especially true in the case of the Green's dyadic 
for the infinite domain. 
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Triality Type and its Generalization in Unitary Symmetry Theories* 
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Department of Physics and Astronomy, University of Rochester, Rochester, New York 
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Within the context of an extension of the SUa-symmetry theory recently suggested by Gell-Mann 
and further developed by the authors, certain aspects of the theory of the special unitary groups 
are examined. The plurality type of a given representation is introduced as the generalization of the 
triality concept to SUn+1 and is shown to be associated with a mUltiplicative conservation law. 
Theorems for the reduction of representations of SUn+l with respect to SUn ® U1(n) are derived 
which are subsequently used to relate plurality type to the existence of fractional eigenvalues for 
the generator Y1(n) of U1(n). 

I. INTRODUCTION 

I N a recent paper, Gell-Mann1 has raised the 
question of the possible occurrence in nature of 

particles (quarks) which can be associated with the 
states of the triplet representations of SUa. Such 
particles must necessarily have nonintegral eigen­
values of Q/e if their quantum numbers are to 
satisfy the Gell-Mann-Nishijima formula 

Q/e = I. + !Y. (1.1) 

In the language of Biedenharn and Fowler,2 we 
may say that the triplet representations of SUa 
have triality typea t rf 0, and that the nonintegral 
charge associated with the basic quark is a charac­
teristic of all states belonging to representations of 
SUa with t rf O. Of course, all particles known at 
present have been accommodated within repre­
sentations of SUa with t = 0 for which integral 
eigenvalues of Q/e follow from Eq. (1.1). 

More recently, the authors4 have suggested a 
theory of strong interaction symmetries, wherein 
representations of SUa with t rf 0 can be used for 
particles whose charges are integral multiples of 
e. It is the purpose of the present paper to provide 
the mathematical background necessary for this 
theory. Although we believe that much of the 
mathematical work to be exhibited is of intrinsic 
value, we wish to present it in its physical context. 
Accordingly we begin with a review of the content 
of our previous paper.4 

If new particles are discovered whose isospin and 
hypercharge suggest that they belong to representa-

* This research was supported in part by the U. S. Atomic 
Energy Commission. 

1 M. Gell-Mann, Phys. Letters 8, 214 (1964). 
2 L. C. Biedenharn and Earle C. Fowler (preprint, 1963). 

See also G. E. Baird and L. C. Biedenharn, paper presented 
at the Conference on Symmetry Principles at High Energy, 
University of Miami, January, 1964. 

3 The definition of triality type for a representation of 
SU tis given as the n = 2 case of the definition (2.6), below. 

, C. R. Hagen and A. J. Macfarlane, Phys. Rev. 135, B 432 
(1964). 

tions of SUa with t rf 0, then one can postulate 
that there exists a new conserved quantum number 
for the strongly interacting particles. We refer to 
it as Y ca) , to distinguish it from hypercharge 
y == y(2), and specify the following assignments: 

(a) yca) = 0 for representations of SUa with t=O, 
(b) yca) rf 0 for representations with t rf O. 

From (a), we see that yea) = 0 for all particles 
known at present. From (b), it follows that one 
can arrange that states of representations of SUa 
with t rf 0 correspond to integral eigenvalues of 
Q/e by replacing Eq. (1.1) by 

(1.2) 

In order to provide a definite framework within 
which our postulates can be realized, we propose 
the extension of the symmetry group of the strong 
interactions from SUa ® U~a), where u~a) is the 
gauge group generated by yca>, to SU4 • This ex­
tension, of course, is the analog of the previous 
extension of the strong interaction symmetry group 
from SU2 ® U~2), i.e., isospin and hypercharge 
symmetry, to SUa. The realization of the above 
ideas follows if one assumes that the SU4 theory 
uses only representations of SU4 with quadrality 
k = O. We see this by noting that the representa­
tions of SUa ® u~a) contained within such repre­
sentations of SU4 always associate yea) = 0 with 
t = 0, and yca) rf 0 with ta rf 0 in such a way that 
(1.2) leads to integral eigenvalues of Q/e. The SU4 

theory thus developed resembles SUa theory as 
it now stands. The question of the occurrence of 
representations of SU4 with k rf 0 arises, and the 
same sequence of ideas repeats. Equation (1.3) leads 
to nonintegral eigenvalues of Q/ e for states of repre­
sentations of SU4 with k rf O. So one can postulate 

. b W) agam a new quantum num er Y ,whose assign-
ments, made in analogy with those for yea>, are 
such that replacement of (1.2) by 
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Q/e = I. + !y(2) + ly(3) + ly(4) (1.3) 

obviates the occurrence of nonintegral eigenvalues 
of Q/ e. Then as before we can realize this situation 
by extending the strong interaction symmetry group 
from SU4 @ U~4), where U~4) is generated by y<4>, 
to SUs, agreeing to use only representations of SUs 
of quintality q = O. In this way a finite hierarcny 
of unitary symmetry theories can be generated, 
each with its appropriate definition of Q. 

Of central importance in the theory outlined 
above is the concept of triality type for representa­
tions of SU3 and its generalization to SU .. +l, which, 
for want of a better alternative, has been given the 
generic name, plurality type.s In Sec. II, after a 
preliminary discussion of notation, we define plural­
ity type and obtain its most important property, 
namely its conservation modulo (n + 1). We also 
define a mUltiplicative quantum number closely 
related to plurality type. In Sec. III, theorems are 
derived for the reduction of representations of SUn + 1 

with respect to the subgroup SUn @ U~"). These 
are used to relate the occurrence of fractional eigen­
values of y~ .. ), canonically defined by such a sub­
group inclusion, to the plurality type of representa­
tions of SUn +1 • We then prove that the successive 
definitions of Q/ e have the properties claimed above. 

II. DEFINITION AND PROPERTmS OF 
PLURALITY TYPE 

We begin by discussing the relationship6 of ir­
reducible representations (IR's) of unitary groups 
to Young diagrams. It is well known that IR's of 
U .. + 1 may be uniquely characterized by a set of 
integers 

(fJ .. +1 = [f1' 12, .,. 1 .. +1] (2.1) 

such that I; ~ 1;+1 for i = 1, ... , n. It is sufficient 
for present purposes to note that those IR's with 
In+1 ~ 0 can be placed in one-to-one correspondence 
with Young diagrams of (n + 1) rows, Ii being 
the number of boxes in the ith row. On restriction 
from U .. +1 to SUn+1, IR's of U .. +1 remain irreducible, 
but no longer do inequivalent IR's remain inequiv­
alent. Indeed, the representations [f]n+1 and [1'] .. +1 

of Un+ 1 become equivalent representations of SUn+l 
if 

5 The concept of plurality type is implicit in the work of 
H. Weyl, Lecture Notes, Princeton University, Princeton, 
New Jersey, (1935). See also E. Stiefel, Commun. Math. 
Helv. 14, 350 (1943). We thank the referee for having drawn 
our attention to these sources. 

a For proof of the statements made in this paragraph, see 
M. Hamermesh, Group Theory (Addison-Wesley Publishing 
Company, Inc., Reading, Massachusetts, 1962), Chap. 10. 

I~ - I; = e (2.2) 

for all i and some integer e. Hence we can and 
always do arrange to have / .. +1 = 0 for all IR's 
of SU .. + 1 • In other words, the IR's of SUn+l can 
be put into one-to-one correspondence with Young 
diagrams of n rows and can thus be characterized 
by the more appropriate notation 

{l} .. = Ill, '" l,,}, (2.3) 

where 

li ~ li+l for i = 1, ... n - 1, 

and 
l .. ~ O. 

In view of the common usage of the highest 
weight notation7 for IR's of SUn+l, it is desirable 
to make explicit its relation to the notation (2.3). 
An IR of SUn+ 1 can be uniquely characterized by 
the values Ai ~ 0, i = 1, ... ,n of the n components 
of its highest weight 

(A)" = (AI, A2, "', A .. ). (2.4) 

If {l} .. and (A) .. are the respective notations for the 
same representation of SU .. +l, the li and Ai are 
related by 

i=I,2,···,n-l (2.5a) 

and 
A,. = l ... (2.5b) 

One can regard the Ai as giving the number of boxes 
by which the ith row of the Young diagram of {l} n 

projects beyond the (i + l)th row. 
We may now give the definition of the plurality 

type p{ll .. of the IR {l} .. of SUn+l in the form 

" 
p{l} .. = El;, modulo (n + 1), (2.6) .-1 

which for the special case of SU3 reduces to the 
definition of triality type given by Biedenharn and 
Fowler.2 The importance of the concept of plurality 
type in the representation theory of SU .. +l stems 
from the following theorem. 

Theorem. For all {kIn that occur in the direct 
product 

{ll .. @ {m} .. , (2.7) 

one has 

p{kl .. = p{ll .. + p{ml .. , modulo (n + 1). (2.8) 
7 See G. Racah, "Group Theory and Spectroscopy," 

Lecture Notes, Princeton University, Princeton, New Jersey 
(1951). 
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The proof follows directly from the Littlewood 
methodS of performing the explicit reduction of 
direct products, a technique which has been applied 
by Edmonds9 in the n = 2 case (SUa). This method 
involves the addition, in as many different ways 
as are allowed, of a total number m = L~-1 mi 
of boxes to the Young diagram of {l}" to form a 
Young diagram with (l + m) = L~-1 (li + mi) 
boxes and at most (n + 1) rows. Allowed ways are 
those which are in accordance with a clearly stated 
set of rules, whose precise nature need not concern 
us here. To each one of the distinct allowed ways 
of obtaining a suitable Young diagram, there cor­
responds one and only one irreducible constituent 
of the direct product (2.7). If the Young diagram 
of any such irreducible constituent {k} n has n rows 
or less, we have k = L::-l k i = l + m, so that the 
result (2.8) follows directly from the definition (2.6). 
However, if the Young diagram has (n + 1) rows 
with x (x > 0) boxes in the last row, we can replace 
it by an equivalent Young diagram with x less 
boxes in each row, and in particular, no boxes in 
the last row. Calling the IR of SU,,+1 to which the 
latter Young diagram corresponds {kIn, we get k = 
I + m - (n + l)x, which again implies (2.8), thus 
completing the proof of the theorem. 

Instead of introducing plurality type as a quan­
tum number which is conserved modulo (n + 1) 
for IR's of SUn + I , we may introduce the conserved 
mUltiplicative quantum number 

P{l} .. = exp [21l"ip{l} .. /(n + 1)]. (2.9) 

Clearly the result 

P{k} .. = P{l} .. P{m},. 

follows from the theorem. 
Finally, in preparation for the next section, we 

fix a suitable notation for the IR's of the group 
U1 to which the remarks made at the start of this 
section do not apply. The group U1 is a one param­
eter Abelian gauge group, and, in general, the 
quantity eiV

4> for any real number y is an IR of U1 

corresponding to the element ei<l> of the group. We 
refer to the IR as y without any brackets. In the 
case of the hypercharge gauge group discussed in 
the next section, the allowed numbers yare the 
eigenvalues of the generator Y of the gauge group. 

8 See D. E. Littlewood, Theory of Group Character8 and 
Matrix Representation of Groups, (Oxford University Press, 
Oxford, England, 1940), pp. 91-98. 

8 A. R. Edmonds, Proc. Roy. Soc. (London) A268, 567 
(1962). 

m. REDUCTION THEOREMS 

We now turn to the derivation of an important 
theorem for the reduction of a representation of 
SU .. + I with respect to the subgroup SU" ® U~") 
of SU,,+l' It will be noted that the intended theorem 
contains a statement of the allowed values of Y~"), 
the generator of u~n), within any representation 
of SUn + I • It is also worth pointing out that the 
subgroup SU" ® Uin

) is precisely that used by 
Biedenharnlo to provide a canonical method of 
labeling basis states of representations of SUn+1 • 

It is sufficient to give a detailed treatment of the 
special case of the reduction of a representation of 
SUa with respect to SU2 ® Ui2

), y(2) = Y (hyper­
charge) being the generator of U~2). The generaliza­
tion of the result to the case of SU,,+l and the 
method of obtaining it, can in this way be made 
obvious. The problem for SUa has, of course, al­
ready been solved by many people, some of whomll 

employ methods related to ours, while others12 
utilize completely different approaches. 

The essential tool is the Weyl formula for the 
character of an IR [Ila = [II, l2' la] of Ua corresponding 
to an element of Ua with eigenvalues Ei (IEil = 1, 
i = 1,2 and 3). We use only the la = 0 case of this 
formula, so that the IR [II, I2' 0] ~ {ll' I2} = {lh 
on restriction to SUa. In terms of the Ei this re­
striction is expressed by 

E1E2Ea = 1. (3.1) 

The formula in question is obtained from1a 

x([l]a, E1, E2, Ea) 

h+2 1.+1 I. 2 1 EI EI E1 EI EI 

11 +2 ls+l I, 2 1 (3.2) E2 E2 E2 E2 E2 

11 +2 1,.+1 I, 2 1\ Ea Ea Ea Ea Ea 

for general [Ila by setting la = O. A simple manipula­
tion on the rows of the determinant in the numerator 
casts the right side of (3.2), with la = 0, into the form 

10 L. C. Biedenharn, J. Math. Phys. 4, 436 (1963). See 
also L. C. Biedenharn, "Group Theoretical Approaches to 
Nuclear Spectroscopy" in Lectures in Theoretical Physics, 
edited by W. E. Brittin et al. (Interscience Publishers, Inc., 
New York, 1963), Vol. 5. 

11 J. E. Wess, Nuovo Cimento 15, 52 (1960); M. Ikeda, 
S. Ogawa, and Y. Ohnuki, Progr. Theoret. Phys. (Kyoto) 
22, 715 (1959); S. Okubo, Progr. Theoret. Phys. (Kyoto) 
27, 949 (1962); A. J. Macfarlane, E. C. G. Sudarshan, and 
C. Dullemond, Nuovo Cimento 30,845 (1963). 

12 L. C. Biedenham, Phys. Letters 3, 254 (1963) and 
lectures cited in Footnote 10; D. L. Pursey, Proc. Roy. 
Soc. (London) A275, 284 (1963); N. Mukunda, (private 
communication). 

13 H. Weyl, Theory of Groups and Quantum Mechanics 
(Dover PublIcations, Inc., New York, 1931), p. 381. 
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(3.3) 

formulas of the type 

having been used to cancel the factors (tl - Ea) 
and (E2 - Ea) of the determinant in the denominator. 
We can replace the summation in (3.3) by a sum­
mation L!!L+I L!:'o since the part L!:'o L!:'o 
of the summation in (3.3) is a symmetric sum over 
an antisymmetric summand and thus vanishes. Then 
setting ml = rl - 1 and m2 = s we get 

x([ll' l2' 0], EI, t2, Ea) 

(3.4) 

where 

is the character of the IR [m l , m2] of U2 correspond­
ing to an element of U2 with eigenvalues EI and E2' 

We use (3.4) only for elements of SUa and write 

x({ll' l2}, EI, E2, Ea), 

the restriction (3.1) being implied by the fact that 
the IR argument of X is an IR of SUa. 

We now go on to consider the restriction of the 
element of SUa to an element of the subgroup 
SU2 (8) U~2) of SUa. In physical language we re­
strict attention from the general SUa-symmetry 
transformation to the product of isospin and hyper­
charge gauge transformations. lsospin and hyper­
charge transformations are described by matrices 
which when diagonalized have the respective forms 

~ ~-i ~j ~l :t ~ 1 (3.6) 

o 0 1 0 0 lI-t 

with lEI = 1111 
matrix is 

1. The corresponding product 

(3.7) 

so that we must examine the element of SUa with 
eigenvalues 

(3.8) 

restriction (3.1) being automatically satisfied. We 
thus obtain the character of the IR {ll, l2} of SUa, 
corresponding to the element of SUa specified by 
(3.8), as a compound character of SU2 (8) U?), 
and hence discover that IR's of SU2 (8) U~2) are 
contained in the IR {ll, l2} of SUa. Equations (3.4)­
(3.8) give 

x(fll, l2}, E''I7', E-!'I7i , '17-1) 

We conclude that the IR {ll, l2} of SUa contains 
within it the IR {ml - m2} (8) y(2) of SU2 (8) U~2), 
where 

y(2) = ml + m2 - lUI + l2) (3.9) 

once and only once for each pair of integers ml and 
m2 allowed by the inequalities 

(3.10) 

This is to be recognized as a nontrivial refinement 
of a result given by Weyl.l4 

Since in particle physics, it is customary to use 
the highest weight notation for IR's of SUa, we 
use Eq. (2.5) to translate this last result into the 
statement that the IR (AI, A2) of SUa contains within 
it an (I, Y) multiplet with I and Y values given 
by 

(3.11) 

for each pair of values of m l and m2 allowed by 

(3.12) 

We note that Eqs. (3.11) and (3.12) exactly re­
produce the result stated without proof as Eqs. 
(2.8)-(2.10) of the last-named paper of Footnote 11. 

The derivation of a reduction theorem for SUn + 1 

analogous to that contained in Eqs. (3.9) and (3.10) 
for SUa proceeds along the same lines and we there­
fore confine ourselves to a statement of the result.16 

The IR {l} .. of SUn +1 contains within it the IR 
{mi - mn , ••• ,mn - I - mn } (8) yen) of SU .. (8) U~"), 
where y ( .. ) is given by 

yCn) = m - nl/(n + 1), 
.. 

m = L: m, 
i-I 

U H. Weyl, Ref. 13, p. 391. 
15 Such a result has been obtained in a different manner by 

1. M. Gelfand and M. L. Cetlin, Dokl. Akad. N auk SSSR 71, 
825 (1950). See also G. E. Baird and L. C. Biedenharn, J. 
Math. Phys. 4, 1449 (1963). We thank the referee for having 
drawn our attention to these sources. 
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once and only once for each distinct (ordered) set 
of integers mI, m2 ••• m" allowed by the inequalities 

This also is to be recognized as a nontrivial generali­
zation of a result given by Weyl.IS 

We can now show how the occurrence of fractional 
eigenvalues of Y~") in any IR {l}" of SU,,+1 is re­
lated to the plurality type p {l}" of the representation. 
In the case of SUa, the values of y(2) = Y that 
occur in {lI, 12} follow from (3.9) and (3.10) and are 

l(ll + 12) - 11, l(ll + 12) - 11 

+ 1 ... l(ll + l2) - 1, Hl1 + l2)' 

Herein the spacing in unity and each value y (2) 

of y(2) is of the form 

(3.13) 

for some integer h. Thus, according to whether the 
triality type of an IR of SUa is 0, 1, 2, its allowed 
hypercharge eigenvalues are of the form "integer", 
"integer plus one-third", "integer plus two-thirds". 
This can be summarized in the operator relationship 

P{l}2 = exp [211iy(2)], 

which follows from Eqs. (2.9) and (3.13). Similarly, 
we see that the allowed values of y(n) in the IR 
{l} .. of SUn+1 are 

ll(n + 1) - ll' ll(n + 1) - II 

+ 1, "', ll(n + 1) - 1, ll(n + 1), 

where 1 = L7-1 1;. As expected, the spacing is 
unity and each y (n) is of the form 

y(,,) = p{ l},./(n + 1) + h (3.14) 

for some integer h. The equivalent operator relation­
ship is 

P{l} .. = exp [211"iy(n)]. (3.15) 

Either Eq. (3.14) or Eq. (3.15) may be regarded 
as containing the desired relationship between the 
plurality type of the IR of SUn+1 and the occurrence 
in the representation of fractional eigenvalues of y~n) . 

Finally, we show that the successive definitions 
of Q/e, Eqs. (1.2), (1.3), etc., each lead to integral 
eigenvalues in their appropriate contexts. It is suffi­
cient to consider Eq. (1.2) within the SUrsymmetry 
theory which uses only IR's {lis of SU4 with k == 
p{l}a = O. Consider any representation {m1 - ma, 
m2 - mal ® y(S) of SUa ® Uia), where y(a) = 
m1 + m2 + ma - 1(l1 + l2 + ls), contained within 
such an IR {l}a of SU4 • We note that b(S) is of 
the form it plus an integer where t = ml + m2 -

2ma = ml + m2 + ma, modulo 3, is the triality of 
{m1 - ms, m2 - mal. Also from (3.11) it follows 
that all the values of (I. + ! Y) contained in 
{ml - ma, m2 - ma} are of the form integer minus 
it, so that the same is true for all values of (I. + ! Y). 
Hence we see that Q/e, as given by Eq. (1.3), has 
integral eigenvalues. 
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Solution of a Singular Integral Equation from Scattering Theory* 

R. P. KENSCHAFTt AND R. D. AMADO 

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 
(Received 11 February 1964) 

The solution of a singular integral equation of the form 

1/;(w, wo) = -.! - .! 1"" p(w) , wo)1/;(w), Wo) ~W) 
W 7r.. WI + w - Wo - ~e 

is obtained. The equation first appeared in the attempt of Kallen and Pauli to solve V - () scat­
tering in the Lee model. The methods developed by one of us to solve that problem are turned to 
solving the integral equation itself. 

I. INTRODUCTION 

I N discussing the Lee model, I Kallen and Pauli2 

encountered an integral equation for the V - 0 
scattering states which they were unable to solve; 
this equation was not of the usual singular type 
often found in particle physics.a

•
4 Since then, one 

of us has solved V - 0 scattering in the Lee models 
by a different approach, which is extended in the 
present paper to yield a solution to the integral 
equation of KP. 

In obtaining the solution, we use physical argu­
ments (such as the relation of the Lippmann­
Schwinger equation to the Schrodinger equation) 
as a guide, but the result, checked by direct substi­
tution, is quite rigorous. It is not however the most 
general solution. Rather than obscure the origin of 
our arguments we rely heavily on the previous work 
in the Lee models; we do not wish to imply by this 
that our method or results are restricted to that 
model. 

In Sec. II we present the integral equation and 
our solution. In Sec. III, using a method developed 
by one of US,

6 we derive an integral equation for 
the scattering amplitude, simply related to the equa­
tion of KP; we then derive an expression for the 
scattering amplitude by the methods of VCLM. 
In Sec. IV we show by direct substitution the validity 
of our solution. 

* Supported in part by the National Science Foundation. 
t National Science Foundation Cooperative Fellow. 
1 T. D. Lee, Phys. Rev. 95, 1329 (1954). 
! G. Kallen and W. Pauli, Kg!. Danske Videnskab. Selskab, 

Mat.-Fys. Medd. 30, No.7 (1955). This paper will be referred 
to as KP. 

s R. Omnes, Nuovo Cimento 8, 316 (1958). 
4 N. I. Muskhelishvili, Singular Integral Equations (P. 

Noordhoff, Ltd., Groningen, The Netherland, 1953). 
i R. D. Amado, Phys. Rev. 122, 696 (1961), referred to 

as VCLM. 
a R. D. Amado, Phys. Rev. 132,485 (1963). 

II 

The integral equation encountered by KP for the 
V - 0 scattering states in the Lee model can be 
written in the form7 

1/;(W, wo) = -.! - .! f"" I 1m hew') dw'. 1/;(w', w01 , 
w 71'.. W + w - Wo - 1,e h(wo - w ) 

(1) 

where we define 

hew) = w + w2 

f"" U(WI) dw l (2) 
71' .. WI(WI - w) 

U(WI) is an arbitrary real function bounded on the 
interval of integration and vanishing at both ends 
thereof. U must be further restricted so that the 
only zero of hew) occurs at w = 0, and so that the 
quantity Z, defined by 

Z = 1 - .! f"" U(WI) dw l = lim hew), 
71'" WI ., .... a> W 

exists and satisfies 0 < Z < l. The lower limit JI. 

is a positive real number. We find that hew) is 
analytic in the complex plane cut along the line 
JI. :::; w < CD, with 

1m hew + iO) :; 1m hew) = wU(w), 

and that hew) is real for w :::; JI..
8 

Equation (1) defines a function 1/; of w with a 
pole at w = 0 and a branch cut on the line - CD < 
W :::; Wo - JI., with the discontinuity across the 

7 In the notation of KP, we have defined", by 

A. (k k) - ~ + L f(w)f(wo) 1/;(w, wo) 
'1'1 , 0 - Ukk. 2V (wwo)t h(wo - w) 

An over-all correction of sign in Eq. (57) of KP has been 
included in (1). 

8 In the notation of VCLM, U(w) is g2u!(w)(w2 - ,.1)1/1/41rw 
and hew) is w[1 - P(w)]. 
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branch cut at the point w related to 1/;(wo - w, wo). 
This equation therefore differs from the standard 
singular equation encountered in particle physics3 

and elasticity theory4 in that the discontinuity of 
the function at a point is not related to the function 
at that point. For that reason KP were unable to 
solve the equation. In this paper we present a 
particular solution of Eq. (1) obtained by a means 
different from that of Omnes and Muskhelishvili. 
That solution is given by 

1/;( ) - h(wo - w) [~+ 2A(w, wo) ] 
w, Wo - w - Wo wh(wo) 1 - h(wo)A(wo, wo) , 

(3) 

in which we define 

1 
X 1m h(w!)' (4) 

In the complex w plane, A is analytic except for 
a left-hand cut - 0) < W ~ Wo - /.L; the discontinuity 
across the cut is purely imaginary if and only if 
Wo ~ 2/.L.9 The analytic properties possessed by 
1/;(w, wo) of Eq. (3) are in agreement with the analytic 
properties ascribed by the integral equation (1) to 1/;, 
and we show in Sec. IV by direct substitution that 
it satisfies the equation. 

III 

The problem in obtaining a solution to (1) is to re­
late the equation to the solution for the V - 0 scat­
tering amplitude obtained by a different method.s 

Since (1) was encountered by KP in solving for 
the state vector-that is, in solving the integral 
form of the "Schr6dinger equation"-we attempt 
to find a corresponding" Lippmann-Schwinger equa­
tion" for the t matrix. This can be derived by 
methods recently presented by one of us.6 Adapting 
these methods to the Hamiltonian for the VNO 
system given in VCLM, we may derive an integral 
equation for the V - 0 scattering amplitude of 
the form 

t(w, wo) = b(w, wo) + ~ b(w, WI)G(WI)t(W' , wo), (5) 
k' 

where the Born term is given, in the notation of 
VCLM, by 

) l u(w)u(wo) 1 
b(w, Wo = 2n ( )t E ' •• WWo -m-w-wo 

(6) 

8 This condition corresponds to no production of 6 par­
ticles. 

and the V propagator by 

G(w' ) = l/h(E - m - w'). (7) 

Letting E = m + Wo + iE, defining 

2Q (wwo)! 
1/;(w, wo) = -2 ()u( ) t(w, wo), (8) g u w Wo 

and writing the summation as an integral, we find 
that we have generated Eq. (1). 

The dispersion-theoretic methods utilized in 
VCLM lead to an expression for the transition 
amplitude off the energy shell, which should be 
simply related to t of (5). Contracting first the 
V particle from the left, and then the 8 from the 
left in (VO~-) I VO~:», we obtain, in the notation 
of that paper, an expression analogous to T(w) 
ofVCLM: 

T(w, wo) = ~ (2Qwo)! (0 If I 8)(8 Iii V O~:»., (9) 
s u(wo) 8 + w - Wo - m - ~E 

Using the definitions of K and F as given in VCLM, 
we obtain 

T( ) _ "U2(W' ) K(wl)F(W' , wo) . 
w, Wo - "-' I I + . 

k' W W W - Wo - ~E 
(10) 

We note that T(wo, wo) is equal to T(wo), giving the 
correct result on the energy shell. 

Results derived or quoted in VCLM lead to an 
expression for T in the form 

T(w, wo) = (l/w)[wo/h(wo)] + IN(wo)A(w, wo) (11) 
== T! + T2, 

where A(w, wo) is given by Eq. (4) and N(wo) by 

N(wo) = 1 + g-2h(wo)T(wo, wo) (12) 

= 2[1 - h(wo)A(wo, woW!. (13) 

The last expression results from Eqs. (11) and (12). 
As a function of the complex variable w, T(w, wo) 

has a simple pole at w = 0 and a branch cut along 
the line - 0) < W ~ Wo - /.L; the integral equation 
(1) assigns the same analytic properties to 1/;(w, wo). 
Attempting to match residues at the pole, and 
recognizing that 1 - (3 represents8 the effects of 
taking the V particle off the energy shell, we try 
a solution of the form 

1/;(w, wo) = (l/l)[h(wo - w)/(w - wo)]T(w, wo), 

giving the result quoted in (3). 

IV 

(14) 

The validity of the ansatz (14) is proved by direct 
substitution in the integral equation. Defining tPl 
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FIG. 1. Contours of integration. 

sponding manner, finding immediately that 

<Pu = w -1 - [h(W)rI 

and 

(16) 

To obtain a recognizable expression for rp2C, 
given by 

h(wo - w) 1'" w' dw' 1 
<P2C = ( , )h( ') 1m he ')' W7r' "w - w Wo - w w 

we again attempt to form a closed contour of inte­
gration. Since the integral now has a left-hand 
branch cut from Wo - J.L to - co, we must introduce 
the contour C3 of Fig. 1, obtaining and N(WO)rp2 as the terms generated, respectively, 

by TI and T2 of (11) upon substitution in the inte-
gralof (1), we seek to show that rp _ h(wo - w) 

2C - w27r'i 
w'dw' 

(el - w)h(wo - w')h(w') 
1/I(w, wo) = <PI + Nrp2 - W-I. 

To calculate <PI, given by 

<P - -wo ! 1'" 1m hew') dw' 
1 - h(wo) 7r' II w'(w' + w - Wo - iE)(W' - Wo - iE), 

we use the property h(w - iO) = h*(w + iO) to 
write 

-wo 1 1 hew') dw' 
<PI = h(wo) 27r'i c. w' (w' + w - Wo - iE)(W' - Wo - iE), 

where the contour C] comes from co to J.L just below 
the real axis and returns to co just above, as in 
Fig. 1. Closing the contour by a large circle C2, 

for which the contribution to the integral vanishes, 
we find by the calculus of residues that 

rpi = ! h(wo - w) ~ _ !. (15) 
w Wo - w h(wo) w 

To calculate rp2, given by 

<P -! 1'" 1m h(WI) dWI 
2 - 7r' II (WI + w - Wo - iE)(WI - Wo - iE) 

11'" w'dw' -1 
X;: II (w' + WI - Wo - iE)h(wo - w') 1m hew')' 

we can justifiably reverse the order of integration. 
Denoting by I the result of the integration over WI, 
we obtain, by the above method, 

I = h~wo, - w') + h(w~) _ h(w~ - w) 
w (w - w) """ w(w - w) 

== IA + IB + I c . 

We then define rp2 = rpU + rp2B + rp2C in a corre-

+ h(wo - w) f w'dw' , , ,. 
w27r'i c. (w - w)h(wo - w )h(w ) 

The first integral may now be evaluated by residues, 
yielding 

1 1 h(wo - w) Wo 
rp2C = he ) - - he ) + rpC3, (18) w w Wo - w Wo 

where rpC3 is the integral over C3 that, after re­
converting to a line integral and changing the vari­
able of integration, reduces to 

rp - h(wo - w) 1'" (w' - Wo) dw' 
C3 - W7r' ,,(w' + w - Wo - iE)h(wo - w') 

1 
X 1m hew') (19) 

h(wo - w) [wo A( ) ( )] = - Wo, Wo - A\w, Wo • 
Wo - w w 

Collecting terms, and using (13), we find that 

rpi + N(WO)rp2 - w-I = 1/1, 

as desired. 
Thus we have shown that (3) satisfies the integral 

equation (1); it is, of course, a particular solution 
of (1). Arbitrary amounts of the solution of the 
homogeneous equation corresponding to (1) can be 
added; however, we do not know the form of these 
homogeneous solutions. Nevertheless, it seems clear 
that (3) is the particular solution appropriate to a 
unitary V - e scattering amplitude, for reasons 
analogous to those given in VCLM. 
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The Clebsch-Gordan Series for 8U(3)* 

SIDNEY COLEMAN 
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A method is explained for the calculation of the reduction of direct products of irreducible repre­
sentations of SU(3). The method is believed to be simpler and more efficient than the usual algorithms. 

T HIS note explains a method for the calculation 
of the reduction of direct products of irreducible 

representations of SU(3). This method is both 
simpler in its foundations and more efficient in its 
application than the usual methods, based on Young 
tableaux or weight diagrams. No attempt has been 
made to search the mathematical literature, but I 
believe the method to be new. 

The method proceeds in two steps: First we 
decompose the direct product of two irreducible 
representations into a direct sum of certain special 
reducible representations, which will be defined 
below. Then we decompose the special reducible 
representations into a direct sum of irreducible 
representations. 

We shall use the familiar characterization! of 
irreducible representations of SU(3) as the trans­
formations induced on irreducible tensorial sets by 
unitary unimodular transformations of a three­
dimensional complex vector space. In particular, 
we shall denote by D(n,m)-or, for brevity, simply 
by (n, m)-that irreducible representation which 
has as its basis the set of all tensors with n upper 
indices and m lower indices, that are completely 
symmetric among the upper indices, completely 
symmetric among the lower indices, and traceless 
(the contraction of any upper index with any lower 
index gives zero). The dimension of (n, m) is the 
number of linearly independent tensors of the speci­
fied type. It is a simple exercise in combinatorics 
to calculate that 

dim (n, m) = !(n + 1)(m + 1)(n + m + 2). (1) 

We shall also need certain special reducible repre­
sentations, which we shall denote by D(n,n' ;m,m')-or, 

for brevity, simply by (n, n'; m, m'). The representa­
tion (n, n'; m, m') is defined as that representation 

* Work supported in part by the Air Force Office of Scien­
tific Research, under Contract No. AF 49(638)589. 

1 See, for example, R. Behrends, J. Dreitlein, C. Fronsda!, 
and W. Lee, Rev. Mod. Phys. 34, 1 (1962); J. J. de Swart, 
Rev. Mod. Phys. 35, 916 (1963). These articles contain ex­
tensive references to the earlier literature. 

which has for its basis the set of all tensors with 
n + n' upper indices and m + m' lower indices, 
that are completely symmetric among the first n 
upper indices, completely symmetric among the last 
n' upper indices, completely symmetric among the 
first m lower indices, completely symmetric among 
the last m' lower indices, and traceless. Roughly 
speaking, (n, n' j m, m') may be thought of as the 
direct product of (n, m) and (n', m') with all traces 
removed, but without any symmetrization. 

It is a simple matter to decompose the direct 
product of irreducible representations into our 
special reducible representations. We merely sep­
arate out all tensors that can be obtained by con­
tracting, in all possible ways, indices from the set 
of n with indices from the set of m', and indices 
from the set of n' with indices from the set of m. 
That is to say, 

(n, m) ® (n', m') 

= (n, n'j m, m') EB (n - 1, n'; m, m' - 1) 

EB (n, n' - 1 j m - 1, m') 

EB (n - 1, n' - 1; m - 1, m' - 1) EB .. '. 
The process terminates whenever we run out of 
indices to contract; that is, whenever a zero appears 
in the series on the right. In more compact form, 

(n, m) ® (n', m') 
min(n,m') min(n' ,m) 

L: L: (n - i, m - jj n' - j, m' - i), 
i-a i-O 

(2) 

where the summation sign indicates a direct sum. 
We now wish to decompose one of our special 

reducible representations into direct sums of irre­
ducible representations. In the language of tensors, 
we want to decompose an arbitrary tensor from the 
basis of (n, m; n', m') into a sum of linear combina­
tions of completely symmetric traceless tensors. Let 
us begin with the upper indices. Let 

1343 
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be an arbitrary tensor of the type under discussion. 
Let us choose a pair of upper indices; with no loss 
of generality they may be i 1 and i"+l' We may write 
the tensor as the sum of two tensors, one of which 
is symmetric under interchange of these indices, and 
the other of which is antisymmetric. Using the 
E tensor, we may write the antisymmetric part in 
terms of a tensor of lower rank, 

The surprising fact, which enormously simplifies the 

where the summation sIgn again represents the 
direct sum. 

To demonstrate the efficiency of this method, 
we conclude with two examples. All arithmetic is 
shown. 

Example 1: (1, 1) (8) (1, 1) 
By Eq. (2), 

(1, 1) (8) (1, 1) = (1, 1; 1, 1) EB (1, 0; 0,1) 

EB (0,1; 1, 0) EB (0, 0; 0,0). 

whole reduction, is that this tensor is already By E (3) q. , 
completely symmetric in its lower indices. 

Proof: For example, let us take the indices jl 
and jm+1' We prove the tensor is symmetric under 
interchange of these indices by showing that their 
contraction with the E-tensor vanishes, 

( ~r .;, .;m+, ~;,.r .;m+, + l' ) = Uk Ui, Ui.+, - Uk U" Ui n +, cyc IC perms. 

But, by the tracelessness of T, the right-hand side 
of this equation is zero. Similar arguments work 
for any pair of indices. Q.E.D. 

Thus, the symmetrization is very simple. We may 
remove pairs of upper indices, adding a lower index 
whenever we do so; or, alternatively, we may remove 
pairs of lower indices, adding an upper index when­
ever we do so-but we can never remove both a 
pair of upper indices and a pair of lower indices, 
for once we have removed a pair of upper (lower) 
indices, the tensor is already completely symmetric 
in its lower (upper) indices. The process terminates 
when we run out of indices. Returning from the 
basis space to the representation, we may write the 
decomposition in compact form: 

(n, n'; m, m') = (n + n', m + m') 
min(ft,,.') 

EB L (n + n' - 2i, m + m' + i) 
.. -1 

min(m,m') 

EB L (n + n' + j, m + m' - 2}), (3) 
i-I 

(1,1; 1, 1) = (2,2) EB (0, 3) EB (3, 0), 

and 

(1,0; 0,1) = (1, 1), 

(0,1; 1, 0) = (1, 1), 

(0, 0; 0, 0) = (0, 0). 

The desired decomposition is the sum of all the 
terms on the right. If we use Eq. (1) to write this 
in terms of the notation in which representations are 
labeled by their dimensions, we find the familiar 
result 

8 (8) 8 = 27 EB 10 EB 10 EB 8 EB 8 EB 1. 

Example 2: (2, 2) (8) (3, 0) 
By Eq. (2), 

(2, 2) (8) (3, 0) 

= (2,3; 2,0) EB (2, 2; 1,0) EB (2,1; 0,0). 

By Eq. (3), 

(2,3; 2,0) = (5,2) EB (3,3) EB (1, 4), 

(2,2; 1, 0) = (4, 1) EB (2, 2) EB (0, 3), 

and 

(2, 1; 0,0) = (3,0) EB (1, 1). 

In the alternative notation, 

27 (8) 10 = 81 EB 64 EB 35 EB 35 EB 27 EB 10 

EB 10 EB 8. 
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